• 제목/요약/키워드: Spray

검색결과 5,323건 처리시간 0.031초

함산소 물질이 혼합된 디젤연료의 분무특성 (Spray Characteristics of Diesel Fuel with Oxygenates)

  • 류근영;하종석;노수영
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.38-44
    • /
    • 2001
  • The effect of four diesel fuels with oxygenated agents fuels on spray properties from plain-orifice atomizer was investigated. The oxygenates evaluated were diglyme, MTBE, DEE and DMM and were blended in weights of 5, 10, 15, 20 and 30% in a baseline diesel fuel. The physical properties such as surface tension, density and viscosity are also measured for each blended oxygenated fuels. It was found that changes in physical properties of fuels considered are enough to influence spray properties, i.e. spray angle, spray tip penetration and mean drop size. Spray properties were measured by PMAS(particle motion analysis system) which is employing a point measurement technology. Spray angle increased with increase in oxygenate content. The effect, however, was not great in the higher blend level. The oxygenated fuels produced more shorter spray tip penetration than diesel fuels. SMD was decreased with the increase in blending percent. SMD for DMM and DEE are represented 10.33 and 3.41% decreasing rates respectively. It was found that changes in spray characteristics of oxygenated fuel were easily large enough to impact pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions from diesel engines when oxygenated fuels is applied.

  • PDF

분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교 (Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System)

  • 박준규;박성욱
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE

  • PARK K.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.215-219
    • /
    • 2005
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. A liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray injecting from single hole injector. Two different test conditions are given, which are a fully developed spray case with various injection pressures and a developing spray case with ambient pressure variation. The LPG spray photographs are compared with the sprays of gasoline and diesel fuel at the same conditions, and the spray angles and penetration lengths are also compared, and then the spray behavior is analyzed. The LPG spray photos show that the dispersion characteristic depends very sensitively on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure, but the angle is quickly reduced at the condition over the pressure. However, the down stream of the LPG spray shows much wider dispersion and less penetration than those of gasoline and diesel sprays regardless ambient pressure condition.

분무건조법에 의한 용사용 WC-17%Co 복합분말제조 및 HVOF(High Velocity Oxy-Fuel) 용사특성 (Fabrication of WC-17%Co Composite Powder for Thermal Spray by Spray-Drying Method and HVOF Thermal Spray Characteristics)

  • 설동욱;김병희;임영우;정민석;서동수
    • Journal of Welding and Joining
    • /
    • 제14권6호
    • /
    • pp.101-108
    • /
    • 1996
  • In this study, WC-l7wt% Co composite powder for thermal spray was fabricated by spray drying method. The agglomerated composite powder had spheroidal morphology and the particle size distribution was 20~60${\mu}{\textrm}{m}$. WC and Co were distributed homogeneously. However, the strength of the spray-dried agglomerate was low due to the pores within the agglomerate. Therefore, the spray-dried agglomerate was broken down during HVOF thermal spray and the microstructure was inhomogeneous with many pores within the coating layer. And the decomposition of WC to W and $W_{6}$ $C_{2.54}$ was accelerated. The strength and flowability of the agglomerate were greatly improved by sintering heat treatment(110$0^{\circ}C$, 1 hour, hi atmosphere), and then the coating layer showed dense and homogeneous microstructure with well-developed splats. The hardness of the coating layer was H $v_{300}$ = 1072.2.2.

  • PDF

고온 고압하에서의 DME 연료 분무 및 증발 특성 (Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature)

  • 김형준;서현규;이창식
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

가솔린엔진용 포트분사식 인젝터의 분무특성에 관한 연구 (Study on the Spray Characteristics of a Port Fuel Injector for a Gasoline Engine)

  • 이상인;이성원;박성영
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.61-66
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. To provide fundamental performance data of 4-hole and 12-hole injectors, spray fuel-mass distribution, wall wetting fuel amount and visualization of injectors have been tested and measured with various fuel supply pressure conditions. Spray visualization has been performed to analyze spray formation, spray angle, stream width and penetration length. Test result shows that wall wetting is greatly influenced by the induction air amount and spray atomization. Spray visualization shows that the 12-hole injector has robust performance characteristics with various fuel supply pressure conditions compared with the 4-hole injector. 4-hole injector generates relatively less wall-wetting fuel amount than 12-hole injector does.

커먼레일식 디젤 인젝터의 충돌 분무에 대한 실험적 연구(1) -거시적 분무 발달 과정- (An experimental study on the impingement spray of a common-rail diesel injector (1) -macroscopic characteristics-)

  • 이창식;박성욱;서상헌
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, experimental study on the wan impingement spray of the common-rail diesel injector is performed. To examine the effect of various factors on the development of spray impinging on the wall, experiments were conducted at the various injection pressures. ambient pressures, wan distances from the injector tip, wall temperatures, and angles of wall inclination. The behaviors of the impingement spray ate visualized by using laser sheet methods and a ICCD camera. It is shown that the spray path penetration of the wall impingement spray increases with the increase of injection pressure, wall distance. wall temperature, wall angle. On the other hand the spray path penetration of the wan impingement spray decreases with the increase of ambient pressure.

  • PDF

디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing)

  • 이창식;이기형;전문수;김영호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구 (The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

초임계상태 분무의 분무 특성에 관한 연구 (The Study on the Spray Characteristics of Supercritical Spray)

  • 박찬준
    • 한국분무공학회지
    • /
    • 제4권3호
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF