• Title/Summary/Keyword: Spotlight Mode

Search Result 25, Processing Time 0.022 seconds

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Raw-data Processing Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Raw-data Processing 기법 분석)

  • 박현복;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.501-504
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is the range-Doppler imaging. However, when the spotlight SAR system was envisioned, range-Bowler imaging fumed out to fail rapidly in this SAR imaging modality. What is referred to as polar format processing, which is based on the plane wave approximation, was introduced for imaging from spotlight SAR data. This paper has been studied for the raw data processing schemes in the spotlight-mode synthetic aperture radar. we apply the wavefront reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the polar format inversion scheme.

  • PDF

Report of Wave Glider Detecting by KOMPSAT-5 Spotlight Mode SAR Image (KOMPSAT-5 Spotlight Mode SAR 영상을 이용한 웨이브글라이더 탐지 사례 보고)

  • Lee, Yoon-Kyung;Kim, Sang-Wan;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.431-437
    • /
    • 2018
  • We analyzed the feasibility of detecting wave gliders moving on the sea surface using SAR images. For the experiment, a model was constructed and placed on the sea using a towing ship before and after the satellite observation time. In the acquisition of KOMPSAT-5 image, high resolution SAR data of spotlight mode was collected considering the small size of wave glider. As a result of the backscattering intensity analysis around the towing ship along with wave glider, several scattering points away from the ship were observed, which are not strong but clearly distinguished from the surrounding clutter values. Considering the distance from the center of the ship, it seems to be a signal by the wave glider. On the other hand, it is confirmed that the wave glider can be detected even at the very low false alarm rate ($10^{-6}$) of the target detection using CFAR. Although the scatter signal by the wave glider could be distinguished from the surrounding ocean clutter in the high resolution SAR image, further research is needed to determine if actual wave gliders are detected in various marine environments.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

PGA Implementation Technique for Stripmap SAR Signal Processing (Stripmap SAR 신호처리를 위한 PGA 적용 기법)

  • Yoon, Sang-Ho;Koh, Bo-Yeon;Kong, Young-Kyun;Shin, Hee-Sub
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.151-161
    • /
    • 2011
  • PGA(Phase Gradient Autofocus) is a representative autofocus technique to improve the SAR(Synthetic Aperture Radar) image quality. PGA can estimate high order phase errors and have good robustness in noisy environments. However, PGA is not suitable to apply to the stripmap mode data directly because it is based on the spotlight mode operation. In this paper, the PGA implementation technique for stripmap mode data and the method of ROI(Region of Interest) selection that affects severely on PGA performance have been proposed. The proposed technique was verified by the point target simulation first, and was applied to the real SAR signal data acquired by the flight test. Finally, the significant improvements in focusing quality were shown in the processed SAR images using the proposed method.

A Modified FSA Technique Using Full-aperture for SAR Spotlight Mode (SAR 집중조사모드를 위해 전 개구면을 사용하는 수정된 FSA 기법)

  • Jung, Young-Kwang;Ra, Won-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.921-932
    • /
    • 2016
  • In this paper, a modified FSA(Frequency Scaling Algorithm) is proposed for KOMPSAT-5 high-resolution SAR image generation. In order to enhance performance of azimuth compression, degraded in sub-aperture processing due to the imperfect geometric parameter of data acquisition, the full-aperture signal processing algorithm is designed based on the exact time-frequency analysis. In addition, an azimuth scaling function is newly devised to make the full-aperture processing algorithm suitable for KOMPSAT-5 sliding-spotlight mode. Different from the previous sub-aperture FSA schemes, the suggested technique could accommodate the merit of unified signal processing structure regardless of operational modes of KOMPSAT-5. Through the point target simulation, it is verified that the suggested algorithm provides superior performance of azimuth compression over the existing full-aperture processing methods. The experimental results using real data acquired by KOMPSAT-5 are also given to demonstrate the effectiveness of our scheme as well.

Minimum-Entropy-Based Autofocus Method for Real SAR Images (실제 SAR 영상에서의 최소 엔트로피 기반의 자동 초점 기법 연구)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.366-374
    • /
    • 2018
  • In cases of airborne equipped with SAR, because the occurrence of motion is inevitable, it is necessary to apply autofocus techniques to SAR images to improve the image performance degradations caused by residual errors. Herein, a robust autofocus algorithm based on the minimum entropy criteria is proposed for the real SAR data in the spotlight mode. The convergence condition of the phase error estimation is checked at every iteration and if it is violated, the size of the phase error estimation is adjusted to the convergence condition. The real SAR raw data is used to demonstrate the excellent performance of the proposed algorithm.

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.

Environmental impact assessment for city logistics distribution systems

  • Guo, Jidong;Ma, Shugang
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.363-368
    • /
    • 2017
  • The external diseconomy is hampering sustainable development of the city logistics sector. Burdens on urban environment imposed by the city logistics industry have been put in the spotlight. Based on the principle of Life Cycle Analysis, the comprehensive environment impact for city logistics systems is measured. Firstly, with the city logistics service chain as a whole, its business processes and their interactions with environment are analyzed. In total four types of major environment impact categories are determined. Secondly, case study is made on three city logistics operators located in Jing-Jin-Ji region of China with different business modes, respectively self-operation mode, joint distribution mode and the $3^{rd}$ Party Logistics or 3PL mode. Through analysis of energy consumption and emissions for various business processes, their comprehensive environmental impact values are finally obtained. Thirdly, horizontally comparative analysis is carried out to these three modes of the urban logistics distribution systems. Results show the advantages of the 3PL and the joint distribution modes in developing greener urban logistics distribution. Future research avenues and policy suggestions are proposed finally.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.