• Title/Summary/Keyword: Spot height method

Search Result 34, Processing Time 0.023 seconds

A Study on the Reclamation Earthwork Calculation Formula (매립토공량 계산식에 관한 연구)

  • 이용희;문두열
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2001
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current method used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). In this paper the spot height method, least square method, and chamber formulas, Chen and Lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of chen and Lin me쇙 by spline method should provide a better accuracy than the spot height method, least square method, chamber formulas. The Chen and Lin formulas can be used for estimating the excavation volume of a pit divide into a grid with unequal intervals. From the characteristics of the cubic spline polynomial, the modeling curve of the Chen and Lin method is smooth and matches the ground profile well. Generally speaking, the nonlinear profile formulas provide better accuracy than the linear profile formulas. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF

Precision measuring of burrs on sheet metal using the laser (레이저를 이용한 박판 버의 정밀측정)

  • 신홍규;홍남표;김헌영;김병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1824-1827
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. The laser burr measuring system consists of the laser probe, the photo detector, the achromatic doublet lens, and the rotary & the X-Y table. In previous reports, we used simple vertical measuring method. But, as we used relatively bigger laser spot diameter and had the limited reflection angle, it was difficult to obtain the precise measuring results. So called, the spot size effect makes the profile of burr measured distorted and the burr height measured smaller. By introducing the novel laser measuring method which employing the achromatic lens system and the tilting mechanism, we could make the spot size smaller and get the appropriate beam direction angle. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

DTM GENERATION OF RADARSAT AND SPOT SATELLITE IMAGERY USING GROUND CONTROL POINTS EXTRACTED FROM SAR IMAGE

  • PARK DOO-YOUL;KIM JIN-KWANG;LEE HO-NAM;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.667-670
    • /
    • 2005
  • Ground control points(GCPs) can be extracted from SAR data given precise orbit for DTM generation using optic images and other SAR data. In this study, we extract GCPs from ERS SAR data and SRTM DEM. Although it is very difficult to identify GCPs in ERS SAR image, the geometry of optic image and other SAR data are able to be corrected and more precise DTM can be constructed from stereo optic images. Twenty GCPs were obtained from the ERS SAR data with precise Delft orbit information. After the correction was applied, the mean values of planimetric distance errors of the GCPs were 3.7m, 12.1 and -0.8m with standard deviations of 19.9m, 18.1, and 7.8m in geocentric X, Y, and Z coordinates, respectively. The geometries of SPOT stereo pair were corrected by 13 GCPs, and r.m.s. errors were 405m, 705m and 8.6m in northing, easting and height direction, respectively. And the geometries of RADARS AT stereo pair were corrected by 12 GCPs, and r.m.s. errors were 804m, 7.9m and 6.9m in northing, easting and height direction, respectively. DTMs, through a method of area based matching with pyramid images, were generated by SPOT stereo images and RADARS AT stereo images. Comparison between points of the obtained DTMs and points estimated from a national 1 :5,000 digital map was performed. For DTM by SPOT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. For DTM by RADARSAT stereo images, the mean values of distance errors in northing, easting and height direction were respectively -7.6m, 9.6m and -3.1m with standard deviations of 9.1m, 12.0m and 9.1m. These results met the accuracy of DTED level 2

  • PDF

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Topographic Mapping using SAR Interferometry Method (레이다 간섭기법(SAR Interferometry)을 이용한 지형도 제작)

  • Jeong, Do-Chan;Kim, Byung-Guk
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.67-76
    • /
    • 2000
  • Recently, SAR Interferometry method is actively being studied as a new technic in topographic mapping using satellite imageries. it extract height values using two SAR imageries covering same areas. Unlike when using SPOT imageries, it isn't affected by atmospheric conditions and time. But it is difficult to process radar imageries and the height accuracy is very low where relief displacements are high. In this study, we produced DEM(Digital Elevation Model) using ERS-1, ERS-2 tandem data and analysed the height accuracy over 14 ground control points. The mean error in height was 14.06m. But when using airborne SAR data, it Is expected that we can produce more accurate DEM which will be able to ue used in updating 1/10,000 or 1/25,000 map.

  • PDF

Accuracy Evaluation by GCP Acqusition Methods in Bundle Adjustment (SPOT 영상용 번들조정에서 지상기준점의 획득방법에 따른 정확도 분석)

  • Yeu, Bock Mo;Lee, Hyun Jik;Park, Hong Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.163-170
    • /
    • 1991
  • The 3 dimensional point positioning from SPOT imagery is performed by bundle adjustment methods of analytical and digital photogrammetry, and need the precise determination of image coordinates and accurate coordinates of ground control points. In this study, the authors analysed the digitized planimetric accuarcy and height accuracy of topographic maps in comparison with accurate coordinates by coordinates resulted by bundle adjustment in each cases between different acquisition method of ground control point coordinates and formats of SPOT imagery.

  • PDF

The Reconstruction of topographical data using Height Sensitivity in SAR Interferometry (레이다 간섭기법에서 고도민감도를 활용한 지형정보 복원)

  • 김병국;정도찬
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • Nowadays, SAR Interferometry is actively being studied as a new technique in topographic mapping using satellite imagery. It extracts height values using phase information derived by two SAR imageries covering same areas. Unlike when using SPOT imagery, it is not affected by atmospheric conditions and time. So to speak, we can say that SAR Interferometry is flexible in imagery acquisitions and can get height data economically over wide area. So, it is expected that SAR Interferometry will be widely using in GIS applications. But, in some area occurring geometric distortion, height data are misjudged or not extracted depending on phase unwrapping algorithms. IN the case of ERS tandem data, the accuracy of height data was worst in mountain area. It is the because of the short incidence angle resulted in layover effect. Of the phase unwrapping algorithms, path-following was better in height accuracy but could not get data in layover area. In this area, we could get height data using Height Sensitivity. In concludion, we could get DEM that maintained the accuracy of path-following method and have overall data across imagery.

  • PDF

Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair (중첩된 박판간의 결합을 위한 접착-성형공정)

  • 정창균;김태정;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.

A Size Evaluation for Continuous Flaw Monitoring Using the Tip Diffraction Method (초음파(超音波)의 Tip Diffraction 방법(方法)을 이용한 결함연속감시(缺陷連續監視)를 위한 크기 평가(評價))

  • Jung, H.K.;Cho, C.K.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • Most of significant defects in the pressure boundaries of nuclear power plant we re dispositioned to be monitored periodically every inservice inspection. Due to the difficulty of the defect sizing during operation, it is necessary to develope the continuous flaw monitoring techniques. The Tip Diffraction method, specifically speaking, spot seems to be suitable for flaw monitoring. The optimum conditions of selecting the transducer were 3.5 MHz and 45-57 degree according to compatibility with the defect height. The effective calculation of the defect height was to assume the fact that the incident beam is parallel. This method would be supplemented to ASME method about the defect characterization for the surface flaw.

  • PDF

A Study on the Earthwork Volume Decision using the Spline Interpolation (Spline보간법을 이용한 토공량결정에 관한 연구)

  • 문두열
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.305-313
    • /
    • 2000
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current methods used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). Generally speaking. the nonlinear profile formulas provide better accuracy than the linear profile formulas. However, all the formulas mentioned have a common drawback to ground profile, such as sharp corners or the grid points of any two straight lines. In this paper, mathematical model for a searching examination the drawbacks of the current methods is presented. Also, the presented formular, the spot height method, and chamber formulas, chen and lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of a proposal area formula by spline method should provide a better accuracy than the spot height method, chamber formulas, chen and lin method. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF