Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.325-326
/
2021
LNG는 환경규제에 따라 화석에너지에서 친환경 재생에너지로 전환되는데 중요한 역할을 하는 에너지원이다. UN산하 세계해사기구(IMO)의 MARPOL협약에 따라 선박 황산화물 배출가스규제로 LNG추진 선박에 대한 수요가 증가되고 있을 뿐만 아니라 미국의 쉐일혁명으로 LNG를 수출함에 따라 공급의 변화가 급격하게 이뤄지고 있다. 과거 국가 주도의 프로젝트 성격이 강한 LNG 운송시장은 장기정기용선계약이 대부분이었으나 수요와 공급시장의 급격한 변화로 스팟시장의 중요성이 커지고 있다. 따라서 본 논문은 LNG 운송시장에서 시장참여자들의 스팟거래에 합리적인 의사결정이 이뤄지도록 과학적인 예측방법을 제시하고자 한다. LNG 스팟운임 예측에 기계학습모델 중 인공신경망 모델을 적용할 것이며 기존의 시계열분석 방법인 ARIMA모델과 비교하여 본문에서 제시된 모델의 예측성능의 우수성을 확인하였다. 본 논문은 LNG 스팟운임을 다룬 최초의 연구로서 학문적인 차별성이 기대된다.
The core decisions of bulk shipping businesses can be summarized as the timing and the choice of period for which carrying capacity is traded. In particular, frequent decisions to trade freight either with repeated spot transactions or with a one-off long-term deal critically impact business performance. Even though a variety of freight trading strategies can be employed to facilitate the decisions, chartering practitioners have not been active in utilizing these strategies, and academic research has rarely proposed applicable solutions. The specific properties of freight as a tradable commodity are not properly reflected in existing studies, and limitations have been reported in their application to the real world. This research focused on the establishment of applicable freight trading strategies by taking into account two properties of freight: time perishability and term-dependant pricing. In addition to traditional trading strategies, artificial neural networks were applied for the first time to the test of freight trading strategies. The performances of the trading strategies were measured and compared to produce a remarkable outperformance of the ANN. This research is expected to make a significant contribution to chartering practices by enhancing the quality of chartering decisions and eventually enabling the effective management of freight rate risk. In addition to methodological expansion, the result will propose a way to approach the controversial issue of freight market efficiency.
In the shipping industry, it is essential to engage in the preemptive prediction of freight rate volatility through market monitoring. Considering that freight rates have already started to fall, the loss of shipping companies will soon be uncontrollable. Therefore, in this study, factors affecting the freight rates of bulk carriers, which have relatively large freight rate volatility as compared to container freight rates, were quantified and analyzed. In doing so, we intended to contribute to future shipping market monitoring. We performed an analysis using a vector error correction model and estimated the influence of six independent variables on the charter rates of bulk carriers by Handy Size, Supramax, Panamax, and Cape Size. The six independent variables included the bulk carrier fleet volume, iron ore traffic volume, ribo interest rate, bunker oil price, and Euro-Dollar exchange rate. The dependent variables were handy size (32,000 DWT) spot charter rates, Supramax 6 T/C average charter rates, Pana Max (75,000 DWT) spot charter, and Cape Size (170,000 DWT) spot charter. The study examined charter rates by size of bulk carriers, which was different from studies on existing specific types of ships or fares in oil tankers and chemical carriers other than bulk carriers. Findings revealed that influencing factors differed for each ship size. The Libo interest rate had a significant effect on all four ship types, and the iron ore traffic volume had a significant effect on three ship types. The Ribo rate showed a negative (-) relationship with Handy Size, Supramax, Panamax, and Cape Size. Iron ore traffic influenced three types of linearity, except for Panamax. The size of shipping companies differed depending on their characteristics. These findings are expected to contribute to the establishment of a management strategy for shipping companies by analyzing the factors influencing changes in the freight rates of charterers, which have a profound effect on the management performance of shipping companies.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.127-132
/
2021
This paper applies a machine learning model to forecasting freight rates in dry bulk and tanker markets with wavelet decomposition and empirical mode decomposition because they can refect both information scattered in the time and frequency domain. The decomposition with wavelet is outperformed for the dry bulk market, and EMD is the more proper model in the tanker market. This result provides market players with a practical short-term forecasting method. This study contributes to expanding a variety of predictive methodologies for one of the highly volatile markets. Furthermore, the proposed model is expected to improve the quality of decision-making in spot freight trading, which is the most frequent transaction in the shipping industry.
Journal of the Korea Society of Computer and Information
/
v.27
no.7
/
pp.187-194
/
2022
LNG is known as the transitional energy source for the future eco-friendly, attracting enormous market attention due to global eco-friendly regulations, Covid-19 Pandemic, Russia-Ukraine War. In addition, since new LNG suppliers such as the U.S. and Australia are also diversifying, the LNG spot market is expected to grow. On the other hand, research on the LNG transportation market has been marginalized. Therefore, this study attempted to predict short-term LNG 160K spot rates and compared the prediction performance between artificial neural networks and the ARIMA model. As a result of this paper, while it was difficult to determine the superiority and superiority of ARIMA and artificial neural networks, considering the relative free of ANN's contraints, we confirmed the feasibility of ANN in LNG 160K spot rate prediction. This study has academic significance as the first attempt to apply an artificial neural network to forecasting LNG 160K spot rates and are expected to contribute significantly in practice in that they can improve the quality of short-term investment decisions by market participants by increasing the accuracy of short-term prediction.
The handysize bulk carriers are capable of transporting a variety of cargo that cannot be transported by mid-large size ship, and the spot chartering market is active, and it is a market that is independent of mid-large size market, and is more risky due to market conditions and charterage variability. In this study, Granger causality test, the Impulse Response Function(IRF) and Forecast Error Variance Decomposition(FEVD) were performed using monthly time series data. As a result of Granger causality test, coal price for coke making, Japan steel plate commodity price, hot rolled steel sheet price, fleet volume and bunker price have causality to Baltic Handysize Index(BHSI) and charterage. After confirming the appropriate lag and stability of the Vector Autoregressive model(VAR), IRF and FEVD were analyzed. As a result of IRF, the three variables of coal price for coke making, hot rolled steel sheet price and bunker price were found to have significant at both upper and lower limit of the confidence interval. Among them, the impulse of hot rolled steel sheet price was found to have the most significant effect. As a result of FEVD, the explanatory power that affects BHSI and charterage is the same in the order of hot rolled steel sheet price, coal price for coke making, bunker price, Japan steel plate price, and fleet volume. It was found that it gradually increased, affecting BHSI by 30% and charterage by 26%. In order to differentiate from previous studies and to find out the effect of short term lag, analysis was performed using monthly price data of major cargoes for Handysize bulk carriers, and meaningful results were derived that can predict monthly market conditions. This study can be helpful in predicting the short term market conditions for shipping companies that operate Handysize bulk carriers and concerned parties in the handysize chartering market.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.