• Title/Summary/Keyword: Spot Welding Part

Search Result 45, Processing Time 0.025 seconds

A Study on the Weldability and the Fatigue Characteristics in Resistance pot Welding of 5182-O/6061-T6 Dissimilar Aluminum Alloy Sheets (이종 AI합금의 저항점용접부 용접성과 피로특성에 관한 연구)

  • 박진철;정원욱;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.44-52
    • /
    • 1999
  • This study deals with spot weld ability of dissimilar aluminum alloy sheets in order to take advantage of its lightweight and strength. The paper also shows the relationship between weld elements(i.e. current, welding time and tip force) and weld quality on the resistance spot weld part of the same and dissimilar Al alloy. The conclusions are: (1) Because of excessive tip force, deep indentation remained at the Al 5182 side which is lower stiffness at the dissimilar Al alloy. (2) Weld quality (i.e. tensile shear strength) of dissimilar Al alloy is superior to that of the same Al 6061 alloy. (3) As long cycles, fatigue life of spot weld specimen on dissimilar Al alloy sheets was better than that of the same Al alloy.

  • PDF

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

Effect of Temperature and Water Assumtion on Strength of Spot Welded Zine Steel Plates (점용접 아연도금판의 강도특성에 대한 온도 및 침수의 영향)

  • Seo, Do-Won;Yoon, Ho-Chel;Choi, Jun-Yong;Lim, Jae-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.358-363
    • /
    • 2003
  • Spot welded structure is operated in diverse situation because of temperature, humidity and precipitation. In addition factors of environmental pollution such as acid rain, that courses corrosion, have the tendency to increase, But spot welded structure strength is affected by dampness and environment temperatures. Therefore, it is important to evaluate effect of temperature of spot welded part, In this study, the strength distribution of spot welded plates is evaluated about the environmental temperature of zine coated steel plates and test is conducted with welded part immersed in distilled and synthetic sea water. Specimens are immersed into water for 10, 100, 500 and 1000hours to evaluate the effects of water immersion time on tensile-shear strength under the conditions of -40, 0, 20 and $50^{\circ}C$. Strength is evaluated by tensile-shear test. The conditions of spot welding are 240kgf electrode force, 10KA welding current with 0 and 5mm clearance. From this study, spot welded specimens with clearance have lower tensile-shear strength in the distilled water or synthetic sea water comparing with spot welded specimens without clearance. And they have lower tensile-shear strength under $-40^{\circ}C$ and over $50^{\circ}C$.

  • PDF

An Algorithm for Calculating the RMS Value of the Non-Sinusoidal Current Used in AC Resistance Spot Welding

  • Zhou, Kang;Cai, Lilong
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1139-1147
    • /
    • 2015
  • In this paper, an algorithm based on a model analysis of the online calculation of the root-mean-square (RMS) value of welding current for single-phase AC resistance spot welding (RSW) was developed. The current is highly nonlinear and typically non-sinusoidal, which makes the measuring and controlling actions difficult. Though some previous methods focused on this issue, they were so complex that they could not be effectively used in general cases. The electrical model of a single-phase AC RSW was analyzed, and then an algorithm for online calculation of the RMS value of the welding current was presented. The description includes two parts, a model-dependent part and a model-independent part. Using a previous work about online measurement of the power factor angle, the first part can be solved. For the second part, although the solution of the governing equation can be directly obtained, a lot of CPU time must be consumed due to the fact that it involves a lot of complex calculations. Therefore, a neural network was employed to simplify the calculations. Finally, experimental results and a corresponding analysis showed that the proposed algorithm can obtain the RMS values with a high precision while consuming less time when compared to directly solving the equations.

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

Development of Intelligent Monitoring System for Welding Process Faults Detection in Auto Body Assembly (자동차 차체 제조 공정에서 용접 공정 오류 검출을 위한 지능형 모니터링 시스템 개발)

  • Kim, Tae-Hyung;Yu, Ji-Young;Rhee, Se-Hun;Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • In resistance spot welding, regardless of the optimal condition, bad weld quality was still produced due to complicated manufacturing processes such as electrode wear, misalignment between the electrode and workpiece, poor part fit-up, and etc.. Therefore, the goal of this study was to measure the process signal which contains weld quality information, and to develop the process fault monitoring system. Welding force signal obtained through variety experimental conditions was analyzed and divided into three categories: good, shunt, and poor fit-up group. And then a monitoring algorithm made up of an artificial neural network that could estimate the process fault of each different category based on pattern was developed.

Design Program of Deck Plate Slab System with Non-welding Truss Type Reinforced Bar (철근트러스 압접 데크플레이트 바닥 구조의 설계 프로그램)

  • Yoon, Myung-Ho;Oh, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • There are many problems in present truss-deck slab system for example welding defect, segregation, water leakage, rust and tarnish etc. These problems may be caused by spot welding thin galvanized steel plate and lattice bar. The TOX Joining Systems is to join metal sheets of different material and thickness with and without coating or painting without adding heat or a joining part. Newly developed TOX-deck slab system using non-welding joint is free from above mentioned problems. The objects of this study are suggestion of design strength of TOX joint by experimental and statistical analyses and development of window based program to design the TOX-deck slab system.

  • PDF