• Title/Summary/Keyword: Spot Matching

Search Result 62, Processing Time 0.027 seconds

Grassfire Spot Matching Method for multi-seed matched spot pair (다중 발화점을 이용한 Grassfire 스팟매칭 기법)

  • Ryoo, Yun-Kyoo
    • Journal of the Korea society of information convergence
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Grassfire spot matching method is based on similarity comparison of topological patterns for neighbor spots. This is a method where spot matching is performed as if fire spreads all around on grass. Spot matching starts from a seed spot pair confirmed as a matched pair of spots and spot matching spreads to the direction where the best matching result is produced. In this paper, it is a bit complicated way of grassfire method where multi-seed matched spot pair are manually selected and spot matching is performed from each multi-seed matched spot pair. The proposed method shows better performance in detection rate and accuracy than that of the previous method.

  • PDF

An Iterative Spot Matching for 2-Dimensional Protein Separation Images (반복 점진적 방법에 의한 2차원 단백질 분리 영상의 반점 정합)

  • Kim, Jung-Ja;Hoang, Minh T.;Kim, Dong-Wook;Kim, Nam-Gyun;Won, Yong-Gwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.601-608
    • /
    • 2007
  • 2 Dimensional Gel Electrophoresis(2DGE) is an essentialmethodology for analysis on the expression of various proteins. For example, information for the location, mass, expression, size and shape of the proteins obtained by 2DGE can be used for diagnosis, prognosis and biological progress by comparison of patients with the normal persons. Protein spot matching for this purpose is comparative analysis of protein expression pattern for the 2DGE images generated under different conditions. However, visual analysis of protein spots which are more than several hundreds included in a 2DGE image requires long time and heavy effort. Furthermore, geometrical distortion makes the spot matching for the same protein harder. In this paper, an iterative algorithm is introduced for more efficient spot matching. Proposed method is first performing global matching step, which reduces the geometrical difference between the landmarks and the spot to be matched. Thus, movement for a spot is defined by a weighted sum of the movement of the landmark spots. Weight for the summation is defined by the inverse of the distance from the spots to the landmarks. This movement is iteratively performed until the total sum of the difference between the corresponding landmarks is larger than a pre-selected value. Due to local distortion generally occurred in 2DGE images, there are many regions in whichmany spot pairs are miss-matched. In the second stage, the same spot matching algorithm is applied to such local regions with the additional landmarks for those regions. In other words, the same method is applied with the expanded landmark set to which additional landmarks are added. Our proposed algorithm for spot matching empirically proved reliable analysis of protein separation image by producing higher accuracy.

Detection of Landmark Spots for Spot Matching in 2DGE (2차원 전기영동 영상의 스팟 정합을 위한 Landmark 스팟쌍의 검출)

  • Han, Chan-Myeong;Suk, Soo-Young;Yoon, Young-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2011
  • Landmark Spots in 2D gel electrophoresis are used in many methods of 2DEG spot matching. Landmark Spots are obtained manually and it is a bottle neck in the entire protein analysis process. Automated landmark spots detection is a very crucial topic in processing a massive amount of 2DGE data. In this paper, Automated landmark spot detection is proposed using point pattern matching and graph theory. Neighbor spots are defined by a graph theory to use and only a centered spot and its neighbor spots are considered for spot matching. Normalized Hausdorff distance is introduced as a criterion for measuring degree of similarity. In the conclusion, the method proposed in this paper can get about 50% of the total spot pairs and the accuracy rate is almost 100%, which the requirements of landmark spots are fully satisfied.

An Efficient Method to Find Accurate Spot-matching Patterns in Protein 2-DE Image Analysis (단백질 2-DE 이미지 분석에서 정확한 스팟 매칭 패턴 검색을 위한 효과적인 방법)

  • Jin, Yan-Hua;Lee, Won-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.551-555
    • /
    • 2010
  • In protein 2-DE image analysis, the accuracy of spot-matching operation which identifies the spot of the same protein in each 2-DE gel image is intensively influenced by the errors caused by the various experimental conditions. This paper proposes an efficient method to find more accurate spot-matching patterns based on multiple reference gel images in spot-matching pattern analysis in protein 2-DE image analysis. Additionally, in order to improve the reduce the execution time which is increased exponentially along with the increasing number of gel images, a "partition then extension" framework is used to find spot-matching pattern of long length and of higher accuracy. In the experiments on real 2-DE images of human liver tissue are used to confirm the accuracy and the efficiency of the proposed algorithm.

A Study on the Recognition of Bilevel Shapes Using the Contour Direction Histogram & Spot Matching Method (윤곽선 방향의 히스토그램과 Sampled Spot Matching을 이용한 이치 형상의 인식 알고리즘)

  • 김광섭;이상묵;정동석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.69-77
    • /
    • 1992
  • Pattern Recognition is one of the fundamental areas of computer vision. The recognition of patterns with varying size and severe defects is especially important. However, it is known that the conventional algorithms such as GHT or structural approaches have limitations in speed and accuracy. In this paper, in order to avoid above-mentioned problems, we propose a new recognition algorithm which exploits the histogram of contour directions and the sampled spot matching method. While the former provides little influence against size variation, the latter has strong immunity to noise and defects. We applied those proposed algorithms for the recognition of numbers extracted from the car number plates and shapes of aircraft. Experimental result shows that it is possible to solve above-mentioned problems by complementary uses of those two suggested algorithms. The contour directional histogram method resulted in high-speed of average 0.013 sec/char and 0.1 sec/aircraft-image on IBM-386. The accuracy of recognition is as high as 99%. Sampled spot matching method has less speed than the former one, however, it showed fairly strong immunity to noise and defects.

  • PDF

A Study on the Generation of Digital Elevation Model from SPOT Satellite Data (SPOT 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안철호;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 1991
  • This study aims to develop techniques for generating Digital Elevation Model(DEM) from SPOT Computer Compatible Tape(CCT) data, so as to present an effective way of generation of DEM for large area. As the first phase of extracting ground heights from SPOT stereo digital data, the bundle adjustment technique was used to determine the satellite exterior orientation parameters. Because SPOT data has the characteristics of multiple perspective projection, exterior orientation Parameters were modelled as a function of scan lines. In the second phase, a normalized cross correlation matching technique was applied to search for the conjugate pixels ill stereo pairs. The preliminary study showed that the matching window size of 13$\times$13 was adequate. After image coordinates of the conjugate pixels were determined by the matching technique, the ground coordinates of the corresponding pixels were calculated by the space intersection method. Then DEM was generated by interpolations. In addtion an algorithm for the elimination of abnormal elevation was developed and applied. The algorithm was very effective to improve the accuracy of the generated DEM.

  • PDF

Correction of Mt. Baekdu DEM Generated from SPOT-5 Stereo Images (SPOT-5 스테레오 영상을 이용한 백두산 DEM 제작과 보정)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Uk;Oh, Jae-Hong;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2010
  • The geoscientists are very interested in a volcanic reactivity of Mt. Baekdu. Periodical observation and monitoring are thus needed to detect the topographic and environmental changes of Mt. Baekdu. It is, however, very restrictive to survey with difficulty of observer's accessibility in the field due to political problems. This study therefore is to produce digital elevation model (DEM) of Mt. Baekdu using SPOT-5 stereo images. The produced DEM is very not accurate because of using without ground control points (GCP). To correct the previously generated DEM, scale-invariant feature transform(SIFT) matching method is adopted with shuttle radar topography mission(SRTM) DEM of NASA Jet Propulsion Laboratory(JPL). The results of the produced DEM to SRTM DEM matching indicate that the corrected DEM from SPOT-5 stereo images has more detail topographic structures. In addition, difference of spatial distances between the corrected DEM and SRTM DEM are much smaller than non-corrected DEM.

DEM Extraction from KOMPSAT-1 EOC Stereo Images and Accuracy Assessment (KOMPSAT-1 EOC입체 영상을 이용한 DEM생성과 정확도 검증)

  • 임용조;김태정;김준식
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2002
  • We carried out accuracy assessment for DEM extraction from the KOMPSAT-1 EOC stereo images over Daejeon and Nonsan in Korea. DEM generation divided into two parts. One is camera modeling and the other stereo matching. We used Orun & Natarajan's(1994) model and Gupta & Hartley's(1997) model in the camera modeling step and checked the possibility using Orun & Natarajan and Gupta & Hartley's models in EOC stereo pairs. For stereo matching, we used an algorithms developed in-house for SPOT images and showed that this algorithm could work with EOC images. Using these algorithms, DEMs were successfully generated from EOC images. The comparison of DEM from EOC Images with a DEM from SPOT Images showed that EOC could be used for high-accuracy DEM generation.

Asymmetric Diffusion Model for Protein Spot Matching in 2-DE Image (2차원 전기영동 영상의 단백질 반점 정합을 위한 비대칭 확산 모형)

  • Choi, Kwan-Deok;Yoon, Young-Woo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.561-574
    • /
    • 2008
  • The spot detection phase of the 2-DE image analysis program segments a gel image into spot regions by an image segmentation algorithm and fits the spot regions to a spot shape model and quantifies the spot informations for the next phases. Currently the watershed algorithm is generally used as the segmentation algorithm and there are the Gaussian model and the diffusion model for the shape model. The diffusion model is closer to real spot shapes than the Gaussian model however spots have very various shapes and especially an asymmetric formation in x-coordinate and y-coordinate. The reason for asymmetric formation of spots is known that a protein could not be diffused completely because the 2-DE could not be processed under the ideal environment usually. Accordingly we propose an asymmetric diffusion model in this paper. The asymmetric diffusion model assumes that a protein spot is diffused from a disc at initial time of diffusing process, but is diffused asymmetrically for x-axis and y-axis respectively as time goes on. In experiments we processed spot matching for 19 gel images by using three models respectively and evaluated averages of SNR for comparing three models. As averages of SNR we got 14.22dB for the Gaussian model, 20.72dB for the diffusion model and 22.85dB for the asymmetric diffusion model. By experimental results we could confirm the asymmetric diffusion model is more efficient and more adequate for spot matching than the Gaussian model and the diffusion model.