• Title/Summary/Keyword: Spore discharge

Search Result 5, Processing Time 0.021 seconds

Effects of Light, Desiccation and Salinity for the Spore Discharge of Gracilaria verrucosa (Rhodophyta) in Korea

  • Kim Young Sik;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.257-260
    • /
    • 2001
  • The effects of light, desiccation and salinity on the discharge of spores in Korean agarophyte, Gracilaria verrucosa were studied. Among the examined factors, light after darkness was the most effective for spore discharge. The maximum release of tetraspores was induced at 24 h after the treatment. Desiccation also seems to be conductive to the release of tetraspores. However, its effect, as in treatment of distilled water for salinity, was hardly found in induction of carpospore discharge. This may suggest that spore discharge in this alga is primarily related with photoperiodic rhythm. Also it appears that the amount of light energy received by fertile thalli also significantly affects to the spore release, considering relationship between the amount of the discharged spores and the elapsed time after treatment.

  • PDF

Effects of Water Logging on Spore Productivity of Selected Lignicolous Basidiomycetes (수종(數種)의 목재부식성(木材腐蝕性) 담자균류(擔子菌類)의 포자생산성(胞子生産性)에 침수(侵水)가 미치는 영향(影響))

  • Okhuoya, J.A.;Harvey, R.
    • The Korean Journal of Mycology
    • /
    • v.14 no.3
    • /
    • pp.231-235
    • /
    • 1986
  • Spore production mechanism of selected lignicolous basidiomycetes was inhibited by soaking their sporocarps in water for varying periods. Depending on the duration of immersion, some species resumed spore discharge, while in others it was completely ruined. This was related to the nature and consistency of these sporocarps. All the species studied absorbed water quite readily into their sporocarps. The loss of this water through dehydration was more rapid in smaller and delicate species than the bulky and robust ones.

  • PDF

Pattern of Spore Discharge Over Hymenial Surfaces (자실층표면(子實層表面)에서 포자(胞子) 이탈(離脫)양상)

  • Okhuoya, J.A.
    • The Korean Journal of Mycology
    • /
    • v.16 no.2
    • /
    • pp.57-59
    • /
    • 1988
  • Considerable variations in spore productivity were detected within the area of single hymenial surfaces of certain polypores. The hymenium has in irregular patterns, areas of low as well as high spore production, common both in the periphery(young) as well as in the inner(old)part. These have been recorded as isospore diagrams showing that the basidia all over the hymenia are at different stages of development.

  • PDF

Ecology of Marssonina Blotch Caused by Diplocarpon mali on Apple Tree in Kyungpook, Korea (사과나무 갈색무늬병의 발생생태)

  • Kim, Dong-Ah;Lee, Soon-Won;Lee, Joon-Tak
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.84-95
    • /
    • 1998
  • Apple Marssonina blotch, caused by Diplocarpon mali, which has been increasing on apple trees and become one of the most serious diseases on apple trees in Korea since the begining of 1990's. In this study, ecology of Marssonina blotch including disease incidence and spore dispersals was surveyed from 1992 to 1995 in Kyungpook, and factors influencing the incidence of the disease were analyzed. Marssonina blotch began to occur on apple leaves in June and was observed commonly in most of apple orchards after August, and increased rapidly in September. The incidence of this disease was high at the year of low temperature and a lot of precipitation. The conidia discharge began to occur in May and continued to October, and the peak period of spore release was in August and usually more than 70% of total spore release of the year released from August to September. The incidence of the disease was high in the northern and mountain are as such as Yeongjoo, Chungsong, Andong, and relatively low in the southern areas such as Kunwi, Yongchon. Jonathan cultivar was the most susceptible to Marssonina blotch, and Jonagold, Sekaiichi was secondly susceptible and the next Fuji was more susceptible than Tsugaru. The incidence of the disease was relatively high in orchards which cultivation management of irrigation, drainage, air circulation, fertilization, and fungicide spraying were poor.

  • PDF

SPECIES OF CULTIVATED PORPHYRA IN KOREA (한국산 양식김의 종류)

  • KANG Jae Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.77-92
    • /
    • 1970
  • Ueda, in the course of his systematic work on the lavers, Porphyra, in Japan and Korea in 1932, mentioned that most of the cultivated Porphyra belong to Porphyra tenera Kjellman. Then he, dividing the species into two forms, f. typica and f. kjellmani, put Korean cultivated Porphyra under the latter. From the 1930s to the early 1940s, Fujikawa, Kaneko and others worked on Physiological experiments or cultivational experiments of Porphyra in the culture-bed, but there was no mention about the cultivated Porphyra species. However, many fishermen generally recognize that the characteristics of cultivated Porphyra vary depending on their habitat or the picking season, and it is considered that these differences are due to the varieties of the species which are well adaptable to various environments. Recently, I have become aware of the predominant occurrence of P. yezoensis Ueda in most culture-beds of Korea as in the Tokyo Bay or other places in Japan. At present, since artificial seeding for the cultivation of Porphyra with Conchocelis has been carried out and peculiar species can be cultured, a study of the species of cultivated Porphyra has become an important subject. I collected the specimens from a number of culture-beds which are located in the legions shown in fig. 1 from January, 1968 to May, 1970 and found that there are five species, P. tenera Kjellman, P. yezoensis Ueda, P. kuniedai Kurogi, P. seriata Kjellman and P. suborbiculata Kjellman. Among them, P. kuniedai was treated as a round-type, a form of P. tenera, by Kunieda (1939) and Tanaka (1952) and the occurrence of this form is generally recognized by most fishermen. At present, as mentioned above, the most dominant species of cultivated Porphyra is P. yezoensis but the cultivation of P. tenera is restricted to certain culture-beds or the early half of the cultivation period. P. kunieda appears as a mixed species throughout most of the culture-beds, particulary in the later half of the period, while when it was picked in January it appeared dominantly in a place such as Gum-Dang where the 'Bal', splitted bamboo piece mat, was settled during the last of September. This is the first seeding process. The latter two species, P. suborbiculata and P. seriata appear frequently but in small amounts in the later half of the period particulary in the western region of the southern coast. However, it can not be ascertained when P. yezoensis becomes predominant, because specimens have not been available up until recent years but the process can be described as follows: We commonly recognize the ecological characteristics of P. tenera as follows; First, the conchospores of the species develop earlier and the period of its discharge is shorter than those of P. yezoensis; second, the microscopical buds discharge neutral spores which develop into new buds directly and buds develop repeatedly through a short period. Consequently, according to such above ecological characteristics, the species can grow thick on the 'Bal' exclusively. However, buds may disappear when they are harmed by disease such a 'infection by certain parasites or by other unusual environmental conditions. Thus P. yezoensis are enabled to grow on the 'Bal' instead of the former species since they not only develop later than the former but also macroscopical fronds discharge the neutral spore throughout the period from October to May. Likewise, if any disease appears in the culture-bed ill the later half of the period, the former is more severely damaged than the latter because the former have less resistance to the disease than the latter. Thus fewer frond survive and fewer carpospores which are the origin of the next generation can be discharged. However the latter by their nature can continue growing until early summer. In the case of the culture-bed where the above phenomenon occurs repeatedly P. yezoensis gradually may become the dominant species among cultivated Porphyra. In support of the validity of this process we find that according to the description and the plate of Wada (1941), P. tenera, P. yezoensis and P. kuniedai grow together in the culture-bed at the mouth of the Nakdong River where P. yezoensis occurs predominantly and mixed with P. kuniedai.

  • PDF