• Title/Summary/Keyword: Spool

검색결과 217건 처리시간 0.024초

하이브리드 스폴밸브의 정특성 연구 (Study on Static Characteristics of Hybrid Spool Valve)

  • 윤소남;함영복;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, the 4-way spool valve characteristics are clearly defined and proposed new type of spool valve. This paper presents governing equations of the flow through clearances between sleeve and spool as a model of orifice flow for null characteristic analysis, and programmed analysis software of it. This software is possible to basically analysis that not only which case of open center, closed center or critical center but +,- displacement of spool, lab position, boundary region and spool opening of the valve, and to estimate the pressure variation in the spool and external leak flow variation. We are convinced that the scale of load pressure difference is changed as lab condition of spool valve, and this scale is changed with boundary point on the annular clearance. It is vary useful to designer and user of spool valve with this design data and analysis software.

  • PDF

약한 제트 엔진 변조 신호의 Spool Rate 추출을 위한 High-Pass Filtering 기반의 빠른 전처리 기법 (Fast Preprocessing Technique based on High-Pass Filtering for Spool Rate Extraction of Weak JEM Signals)

  • 송원영;김형주;김성태;신인선;명로훈
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.380-388
    • /
    • 2019
  • 제트 엔진 변조(jet engine modulation: JEM) 신호는 제트 엔진 고유의 정보를 제공하기 때문에 표적 인식 분야에서 널리 이용된다. JEM 신호의 고유 정보인 날개 수를 얻기 위해서는 날개의 회전 속도, spool rate를 추출하는 것이 중요하다. 하지만 약한 JEM 신호에서는 회전 속도를 추출하는데 어려움을 겪는다. 이에 본 논문에서는 약한 JEM 신호에서 spool rate를 추출하는 알고리즘을 제안한다. 우선 JEM 신호에서 spool rate를 추출하기 위해서 JEM 신호 성분의 강약을 구분하는 기준을 정하여 신호를 구분한다. 그 중 약한 신호를 high-pass filtering 기반의 전처리 과정을 거쳐 spool rate 추출에 용의하도록 신호를 변형해준다. Spool rate를 추출할 수 있는 신호를 얻고 난 후, peak detection 과정을 통하여 spool peak를 찾고, spool period/rate를 추출한다. 기존의 CEMD(Complex Empirical Mode Decomposition), WD(Wavelet Decomposition)와 같은 방법보다 간단하기 때문에, 추출을 정확하게 할 뿐만 아니라 시간을 매우 절약할 수 있음을 입증하였다.

4방향 스풀밸브의 중립특성에 관한 연구 (A Study on Null Characteristics of 4-way Spool Valve)

  • 함영복;윤소남;이근호;김성동
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.165-171
    • /
    • 2000
  • In this study the 4-way spool valve characteristics are clearly defined and clearly defined and proposed new type of spool valve. This paper presents governing equations of the flow through clearances between sleeve and spool as a model of orifice flow for null characteristics analysis and programmed analysis software of it. This software is possible to basically analysis that not only which case of open center closed center or critical center but _ -displacement of spool lab position boundary region and spool opening of the valve and to estimate the pressure variation in the spool and external leak flow variation. We are convinced that the scale of load pressure difference is changed as lab condition of valve and this scale is changed with boundary point on the annular clearance. It is vary useful to designer and user of spool valve with this design data and analysis software.

  • PDF

스파이럴 그루브가 가공된 스풀밸브의 윤활 특성 연구 (A Study on the Lubrication Characteristics of Spool Valve with Spiral Groove)

  • 홍성호;손상익;김경웅
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.303-314
    • /
    • 2012
  • In this research, spool valves with spiral grooves are suggested and their lubrication characteristics are investigated by numerical analysis. The three-dimensional flow field is obtained by solving the Navier-Stokes equations in dimensionless form, so that the performance variables such as lateral force, friction force and volume flow rate are determined. Also, the lubrication characteristics of spool valves with spiral grooves are compared with those with typical grooves under variable working conditions. It is shown that spool valves with spiral grooves can get better performance in aspect of mitigation of uneven pressure distribution surrounding spool. Moreover, it is found that the minimum distance between spool edges and grooves, the type of spiral groove, and the groove angle have noticeable effect on the lubrication characteristics.

계단형상에 의한 스풀밸브의 유동력 보상 (Flow force compensation by stepped spool)

  • 신원규;최현영;신효필;문의준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.745-749
    • /
    • 2002
  • This paper is on the study of flow force compensating method of spool type valve. A simple flow force compensating method using stepped spool is presented in this paper. It is easy to manufacture stepped spool in the presented method because the shape of it is simple. The method has the merit that the size of valve need not be increased. Actuating force required for driving means of spool can be decreased by the compensation of flow force. The effect of presented method is predicted through CFD analysis. The prototypes of flow force compensating Direct Drive Servo-Valve where the result of CFD analysis is reflected are manufactured, and the measurement of flow force is carried out. It is known from the measurement that the effect of flow force compensation is very similar to from CFD analysis.

  • PDF

계단형상에 의한 스풀밸브의 유동력 보상 (Flow Force Compensation by Stepped Spool Valve)

  • 신원규;최현영;신효필;문의준
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.145-150
    • /
    • 2003
  • This paper is on the study of flow force compensation for spool type valves. A simple method for flow force compensation using a stepped spool is presented in this paper. It is easy to manufacture the stepped spool of the presented method because the shape of it is simple. The method has another merit that the size of valve need not be increased. Actuating force required for driving the spool can be decreased through the compensation of flow force. The effect of presented method is predicted through CFD analysis. The results of the CFD analysis are also utilized for the optimization of step shape. The prototypes of flow force compensated Direct Drive Servo-Valve are manufactured, and the measurements of flow force are carried out. The measured effect of flow force compensation is very similar to that from the CFD analysis.

CFD를 이용한 EPPR 밸브 유동력 특성 분석 및 시뮬레이션 (Simulation of EPPR Valve Flow Force Characteristic using CFD Analysis)

  • 윤주호;윤장원;손호연;김당주;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.14-22
    • /
    • 2017
  • Flow force is the additional unbalanced force acting on the valve spool by fluid flow, excluding the static pressure force that is offset on the spool land wall at the same magnitude. When designing the valve spool, it is assumed that the same average value of static pressure is applied to the inlet and outlet spool land wall in one chamber. However, the high velocity of the fluid flow by the inlet or outlet metering orifice creates unbalanced pressure distribution and generates additional force in the opposite direction to that of the solenoid attraction force. This flow force has a negative effect on the control performance of the EPPR valve, which needs to develop uniform output pressure along the entire spool control range. In this study, we developed a 3D model of the EPPR valve and conducted flow force characteristic analysis using CFD S/W (ANSYS FLUENT). The alleviated flow force model was derived by adjusting the design parameters of the spool notch.

스풀 액추에이터의 노치 특성 (Notch Characteristics of Spool Actuator)

  • 윤소남;강보식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.751-756
    • /
    • 2008
  • This paper presents the fluid characteristics of the spool actuator used for construction vehicles. A spool actuator is used for directional control of pressurized fluid and has a roll to lock the fluid flow. It is important to design the spool actuator optimally because this actuator is actuated in the sleeve by sliding motion and has some critical design parameters such as stick-slip, leakage and shock pressure. The parameters like stick-slip and leakage can be solved by precision manufacturing but the shock pressure which is taken place when the fluid direction is changed needs the parameter analysis procedure throughly. In this study, mathematical modeling and 2 & 3 phase flow dynamics analysis of the spool actuator were achieved. Using suggested model, all possible operating conditions were analyzed.

  • PDF

파일럿 스풀이 주 스풀에 동심 내장된 2단 방향제어밸브의 기초적 특성 (Basic Characteristics of a Two Stage Directional Control Valve with Pilot Spool Assembled in Main Spool Coaxially)

  • 이일영;손제목
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.102-108
    • /
    • 2010
  • In this study, the authors investigate the basic characteristics of a two stage directional control valve with pilot spool assembled in main spool coaxially. The step response characteristics and effects of major design parameters' values on valve performances arc clarified through numerical simulations. In addition, the authors examined the possibility of applying the object valve for this study as a proportional control valve. Based on the numerical simulation results, new design values for the reformed design as a proportional control valve were suggested.

Groove 단면형상에 따른 유압 Spool Valve의 윤활해석 (Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.