• Title/Summary/Keyword: Spoke wheel

Search Result 15, Processing Time 0.028 seconds

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

Analysis of Driver's Field of View using a Shadow Algorithm (그림자 계산을 이용한 운전자의 시계성 해석)

  • 김재정;하용수;김용철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.123-131
    • /
    • 1997
  • To ensure drive's field of view, obstruction area generated by a steering wheel, hub and spoke must be considered at the early stage of automobile design. The current approach to computing obstruction area proposed by SAE is based on 2D drafting procedures so that it is not precise and errorprone. In the paper we discuss the novel approach which models the obstruction area as the shadows of the steering wheel, hub and spoke by assuming the human eye as light sources. The approach is based on ray tracing and space transformations for that it can be applied when free form curves are hired to represent the steering wheel, hub and spoke in CAD environment. As a result, it gives more predise and reliable results than SAE approach.

  • PDF

Evaluation on Structural Stability According to Steering Wheel Type (조향휠의 유형에 따른 구조안정성평가)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.733-740
    • /
    • 2012
  • This paper studies with structural and vibration analysis to evaluate the structural safety according to the types of steering wheels. This study models are two, three and four spoke types. As the number of spokes increases, the maximum equivalent stress becomes smaller but the maximum total deformation becomes a little higher. The natural frequency at three models are shown from 180 to 230Hz as the maximum deformation. The frequency responses as maximum amplitude displacement are happened at 200Hz, 500Hz and 500Hz respectively. In this study, the steering wheel with three spoke type is shown to become suitable at durability and production.

Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel (자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels (승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측)

  • Kang, Sung-Soo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1315-1321
    • /
    • 2011
  • Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

The Case Study on the Erection Construction Method for Soft Retractable Roof Structures (연성개폐 지붕구조물 Erection 시공법에 관한 사례 연구)

  • Park, Keum-Sung;Kim, Hyung-Do;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.101-108
    • /
    • 2016
  • Lifting plan in the large spacial structure is an important factor influencing the efficiency and economy of the construction process. The purpose of this study was deriving the requirements for lifting techniques as the basic research in the double spoke wheel roof structure construction. In the lift up erection method, management plan of the interference error in the column and outer-ring was needed that occur during lifting roof structure. In the bent erection method, material usage reduction plan was required by the structural design of the temporary bent. In the hybrid erection method, lifting plan was needed that minimizes weather condition and crane usage. All lifting techniques were required Value Engineering model for reduction of cost and construction period.