• Title/Summary/Keyword: Spoilage Bacteria

Search Result 178, Processing Time 0.024 seconds

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Antimicrobial Activities of Scutellaria baicalensis Georgi Against Various Pathogens and Spoilage Bacteria Isolated from Tofu (두부 부패 미생물과 병원성 미생물에 대한 황금의 항균효과)

  • Woo, In-Taeck;Park, Kyung-Nam;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.470-475
    • /
    • 2007
  • Antibacterial activities of Scutellaria baicalensis Georgi (SBG) extract were examined against spoilage bacteria isolated from commercial tofu and various pathogens such as Listeria monocytogenes ATCC 19115, Pseudomonas fluorescens ATCC 21541. Staphylococcus aureus ATCC 29737, Salmonella Typhimurium ATCC 11806, Vibrio parahaemolyticus ATCC 17802, and Aeromonas hydrophila KCTC 2358. Four kinds of spore forming organisms were isolated from commercial tofu and identified as Bacillus sp. KN-4, Bacillus sp. KN-6, Bacillus sp. KN-10 and Bacillus sp. KN-20 using API CHB kit. The SBG extract showed high antibacterial activities and significantly inhibited the growth of the isolated spoilage bacteria and pathogens. The inhibitory effects against the organisms increased as the concentration of the SBG extract increased. The antimicrobial activities of the SBG extract were maintained markedly after heat treatments $(80^{\circ}C/30\;min,\;100^{\circ}C/30\;min\;and\;121^{\circ}C/15min)$. The minimum inhibitory concentrations (MIC) of the SBG extract against the organisms ranged from 1,000 ppm to 5,000 ppm.

Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef

  • Zhang, Yimin;Zhu, Lixian;Dong, Pengcheng;Liang, Rongrong;Mao, Yanwei;Qiu, Shubing;Luo, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.585-594
    • /
    • 2018
  • Objective: This study was to determine the bacterial diversity and monitor the community dynamic changes during storage of vacuum-packaged sliced raw beef as affected by Lactobacillus sakei and Lactobacillus curvatus. Methods: L. sakei and L. curvatus were separately incubated in vacuumed-packaged raw beef as bio-protective cultures to inhibit the naturally contaminating microbial load. Dynamic changes of the microbial diversity of inoculated or non-inoculated (control) samples were monitored at $4^{\circ}C$ for 0 to 38 days, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Results: The DGGE profiles of DNA directly extracted from non-inoculated control samples highlighted the order of appearance of spoilage bacteria during storage, showing that Enterbacteriaceae and Pseudomonas fragi emerged early, then Brochothrix thermosphacta shared the dominant position, and finally, Pseudomonas putida showed up became predominant. Compared with control, the inoculation of either L. sakei or L. curvatus significantly lowered the complexity of microbial diversity and inhibited the growth of spoilage bacteria (p<0.05). Interestingly, we also found that the dominant position of L. curvatus was replaced by indigenous L. sakei after 13 d for L. curvatus-inoculated samples. Plate counts on selective agars further showed that inoculation with L. sakei or L. curvatus obviously reduced the viable counts of Enterbacteraceae, Pseudomonas spp. and B. thermosphacta during later storage (p<0.05), with L. sakei exerting greater inhibitory effect. Inoculation with both bio-protective cultures also significantly decreased the total volatile basic nitrogen values of stored samples (p<0.05). Conclusion: Taken together, the results proved the benefits of inoculation with lactic acid bacteria especially L. sakei as a potential way to inhibit growth of spoilage-related bacteria and improve the shelf life of vacuum-packaged raw beef.

Antibacterial Activity and Characteristics of Bacteriocin Produced by Lactobacillus plantarum LMG 7945 (Lactobacillus plantarum LMG 7945가 생산하는 bacteriocin의 항균력과 그 특성)

  • 김상현;이명숙;장동석
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 1995
  • Bacteriocins from lactic acid bacteria have attracted much attention in recent years because of their useful worth in increasing safety and extending shelf life of foods. These substances show an inhibitory effect against some food spoilage bacteria and food-borne pathogens. The inhibitory effect fo the bacteriocin produces by lactic acid bacteria against Listeria monocytogenes(L. monocytogenes) was examined in this study. The culture supernatants of 5 kinds of bacteria among the 10 kinds of testes lactic acid bacteria had the inhibitory activity against Listeria sp., various Gram positive and Gram negative bacteria. Bacteriocin produced by Lactobacillus plantarum(Lact. plantarum) LMG 7945 was the most active toward L. monocytogenes. Bacteriocin production of the Lact. plantarum LMG 7945 cultured on MRS broth was increased late logarithmic phase over early stationary phase. This bacteriocin was stable at heat treatment and acidic pH relatively; The activity was retained after heating at 121$^{\circ}C$ for 15min and was active in the pH range of 2~4 but was lost above pH 5.

  • PDF

Antibacterial Effect of Antibacterial Substance Produced by Lactobacillus amylovorus IMC-1 against Food Spoilage Bacteria (Lactobacillus amylovorus IMC-1에 의해서 생산되는 항균성 물질의 식품 오염세균에 대한 항균 효과)

  • Mok, Jong-Soo;Kim, Poong-Ho;Yu, Hyen-Duk;Kim, Ji-Hoe;Lee, Hee-Jung;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.346-351
    • /
    • 1999
  • To develop a lactic starter to produce antimicrobial substance for inhibiting the growth of a variety of foodborne spoilage bacteria in fermented foods, we investigated the anti-bacterial effect of the antibacterial substance, produced by Lactobacillus amylovorus IMC-1, against foodborne spoilage strains, and its sensitivity on the treatment of proteolytic enzymes. L. amylovorus IMC-1, which was isolated from a traditional cheese in Inner Mongolia, produced a maximum amount of antibacterial substance in the skim milk medium after 72 h incubation at 37$^{\circ}C$, and further incubation resulted in the same activity. The substance obtained from gel filtration inhibited all strains used such as Bacillus subtilis IFO 3025, Staphylococcus aureus IAM 1011, Listeria monocytogenes VTU 206, Escherichia coli RB, and Pseudomonas fragi IFO 3458 at the concentration of 20 units/ml. This substance was found to show bactericidal action against B. subtilis, E. coli, and Ps. fragi, and bacteriostatic activity against both Staph. aureus and L. monocytogenes. The bactericidal action was due to cellular Iysis. The substance is not organic acid, hydrogen peroxide and proteinaceous compound.

  • PDF

Inhibition of Spoilage and Pathogenic Bacteria by Lacticin NK24, a Bacteriocin Produced by Lactococcus lactis NK24 from Fermented Fish Food (젓갈유래 박테리오신 Lacticin NK24에 의한 식품부패 및 병원성 세균의 생육저해)

  • Kim, Hae-Jung;Lee, Na-Kyoung;Cho, Sang-Moon;Kim, Kee-Tae;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1035-1043
    • /
    • 1999
  • Bacteriocins are natural antimicrobial compounds produced by many microorganisms associated with foods, so that there is currently much interest in their use as food biopreservatives. Goal of this study was to partially evaluate lacticin NK24 as a food biopreservative by showing antimicrobial activity of L. lactis NK24 and lacticin NK24 against food-borne spoilage and pathogenic bacteria, respectively. Lactic acid bacteria NK24 isolated from jeot-gal, Korean fermented fish foods, was tentatively identified as Lactococcus lactis and showed broad spectrum of activity against all of spoilage and pathogenic bacteria tested by deferred method. Bacteriocin production in jar fermenter was detected at the mid-log growth phase, and reached the maximum at the early stationary phase, but decreased after the stationary phase. Lacticin NK24 was partially purified by 75% ammonium sulfate precipitation followed by subsequent dialysis. This partially purified lacticin NK24 showed antimicrobial activity against Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Clostridium perfringens, some bacilli, Listeria monocytogenes, Listeria ivanovii, Sphin-gomonas pausimobilis, Escherichia coli and Pseudomonas aeruginosa. Thus, lacticin NK24 examined in this study show promise as a biopreservative be-cause of their broad spectrum of activity.

  • PDF

Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2

  • Bokyung Son;Youna Kim;Booyoung Yu;Minsuk Kong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1050-1056
    • /
    • 2023
  • Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.

Recent next-generation sequencing and bioinformatic analysis methods for food microbiome research (식품 미생물 균총 연구를 위한 최신 마이크로바이옴 분석 기술)

  • Kwon, Joon-Gi;Kim, Seon-Kyun;Lee, Ju-Hoon
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.220-228
    • /
    • 2019
  • Rapid development of next-generation sequencing (NGS) technology is available to study microbes in genomic level. This NGS has been widely used in DNA/RNA sequencing for genome sequencing, metagenomics, and transcriptomics. The food microbiology area could be categorized into three groups. Food microbes including probiotics and food-borne pathogens are studied in genomic level using NGS for microbial genomics. While food fermentation or food spoilage are more complicated, their genomic study needs to be done with metagenomics using NGS for compositional analysis. Furthermore, because microbial response in food environments are also important to understand their roles in food fermentation or spoilage, pattern analysis of RNA expression in the specific food microbe is conducted using RNA-Seq. These microbial genomics, metagenomics, and transcriptomics for food fermentation and spoilage would extend our knowledge on effective utilization of fermenting bacteria for health promotion as well as efficient control of food-borne pathogens for food safety.

Identification of Spoilage Bacteria Isolated from Aseptic Packaged Cooked Rice and Application of Acidic Electrolyzed Saline Solution as Water-for-Cooked Rice (무균포장밥으로부터 분리된 부패 미생물의 동정 및 전해산화수의 취반수로서의 이용 효과)

  • Jeong, Jeong-Hwan;Han, Seon-Jin;Cho, Won-Dae;Hwang, Han-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.788-793
    • /
    • 1999
  • In this study, it was investigated that the isolation and identification of spoilage bacteria from contaminated aseptic packaged cooked rice, the potential for application of acidic electrolyzed saline solution (AESS) as water-for-cooked rice and the microbiological safety of AESS-based cooked rice. Five strains of Bacillus subtilis and a B. cereus strain among the total six isolates were partially identified by biochemical method and by Microbial Identification System (MIS). The bactericidal effect of AESS was similar as 0.1% NaOCl and 70% ethanol solution, or better than that. All of the test microorganisms except Bacillus spp. that were exposed to AESS for five seconds were destructed. The effect of AESS against Bacillus spp. was much better than that of the two solutions and all of them were destructed or inhibited on exposure for five minutes. The pH value of cooked rice prepared using AESS was in the range of 3.6 to 4.3 and was not almost changed through the storage period. Various concentrations of cell suspension of Bacillus isolates were inoculated to cooked rice, which were prepared with tap water and AESS, and stored at $37^{\circ}C$ for two weeks. The result was shown that the bacteria in tap water-based cooked rice appeared normal cell growth, while they were completely repressed in AESS-based cooked rice.

  • PDF

Studies on the Improvement of Storage Property in Meat Sausage Using Chitosan- II Difference of Storage Property by Molecular Weight of Chitosan (키토산 첨가에 의한 축육 소시지의 보존성 개선에 관한 연구- II 키토산의 분자량에 따른 보존성의 차이)

  • 윤선경;박선미;안동현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.849-853
    • /
    • 2000
  • This study was examined for antibacterial effect of various molecular weight of chitosan against spoilage bacteria in emulsion sausage. Four different kinds of chitosan, molecular weights (M.W.) of 1 kDa, 5 kDa, 30 kDa and 120 kDa, wee used. The more molecular weight of chitosan is high, the more storage property of sausage is good during storage at $30^{\circ}C$. Storage properties of sausages between added 0.5% of M.W. 120 kDa chitosan and 150 ppm of sodium nitrite were about the same. Effect of growth-inhibitory of spoilage bacteria was not detected 0.2% of M.W. 1kDa chitosan 0.2% of M.W. 5kDa chitosan have growth-inhibitory effect over 80% against only 3 strains among bacteria isolated from spoiled emulsion sausage. But, 0.2% of M.W. 30 kDa chitosan have growth-inhibitory effect of 80% against all strains of bacteria related to spoilage of emulsion sausage, except S. typhimurium, Especially, 0.2% of M.W. 120 kDa chitosan inhibited over 80% growth against all strains used in this study. The antibacterial activity was increased with their molecular weight.

  • PDF