• Title/Summary/Keyword: Split-Ring Resonator

Search Result 77, Processing Time 0.022 seconds

Isolation Improvement in Vivaldi Antennas Using DSRR (DSRR을 이용한 비발디 안테나 소자 간 격리도 향상)

  • Yun, Juho;Park, Daesung;Jang, Donghyeok;Hwang, Keum Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.739-744
    • /
    • 2018
  • In this paper, a double split-ring resonator(DSRR) is proposed to improve the isolation between Vivaldi antenna elements. The DSRR was designed using a unit cell simulation and applied to a $1{\times}2$ Vivaldi antenna array to confirm the improvement in the isolation. The unit cell size of the proposed DSRR is $5mm{\times}5mm{\times}1.52mm$ and six unit cells are used. To verify the performance of the proposed DSRR, $1{\times}2$ Vivaldi antenna arrays with and without the DSRR were fabricated and measured. The results show an isolation improvement of 20 dB in the Vivaldi antennas with the DSRR when compared to the Vivaldi antennas without the DSRR.

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Magnetic field detector using inductively coupled SRR and simple loop antenna (SRR과 단순한 루프안테나를 유도 결합시킨 자기장 검출기)

  • Lee, Wang-Joo;Ju, Jeong-Ho;Kim, Dong-Ho;Choi, Jae-Ick
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.28-34
    • /
    • 2008
  • A magnetic field detector as a potential MRI receiver is proposed. The proposed device is composed of SRR(split ring resonator) which is a kind of LC resonator first introduced as a negative permeability material and a simple loop antenna. The proposed device showed similar degree of performance to commercial one with a simpler circuit.

A RF Resonator Using Square SRR at 3 T MRI (3 T 자기공명영상시스템에서의 SRR을 이용한 RF 공진기)

  • Son, Hyeok-Woo;Cho, Young-Ki;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.280-283
    • /
    • 2015
  • This paper demonstrates a new radio frequency (RF) resonator at 3 T magnetic resonance imaging (MRI) system. An approach based on a split ring resonator (SRR) having effective metamaterial properties is investigated. Electromagnetic simulation results are compared for RF resonators and discussed in detail at 3 T. A new RF resonator has approximately 10% higher magnetic fields at the center of the human phantom than the previous RF resonator.

Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application (원격 화학 센서로 활용 가능한 플렉서블 미세유체 메타물질 흡수체)

  • Kim, Hyung Ki;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • In this paper, a novel flexible microfluidic metamaterial absorber is proposed for remote chemical sensor applications. The proposed metamaterial absorber consists of a periodic of split-ring-cross resonators(SRCRs) and a microfluidic channel. The SRCR patterns are inkjet-printed using silver nanoparticle inks on paper. The microfluidic channels are laser-etched on polydimethylsiloxane(PDMS) material. The proposed absorber can detect change of the effective permittivity at different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting change of the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results shows that the resonant frequency is 10.49 GHz at the empty channel. When ethanol and DI-water are injected into the channel, the resonant frequencies are 10.04 GHz and 8.9 GHz, respectively.

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

Design of Miniaturized CPW-fed Slot Antenna for 2.45 GHz WLAN Band Applications (2.45 GHz 무선 랜 대역 응용을 위한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.157-158
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs(split-ring resonators) is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input reflection coefficient characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced by 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2.

  • PDF

Design of Compact Dual-band Slot Antenna (소형 이중 대역 슬롯 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.61-62
    • /
    • 2015
  • In this paper, a design method for a dual-band compact slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside of a rectangular slot of the proposed antenna for dual-band operation. Final design parameters are obtained by analyzing the effects of the gap between the SRR conductor and slot, and the width of the SRR conductor on the input reflection coefficient and gain characteristics. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is designed on an FR4 substrate with a dimension of 30 mm by 30 mm.

  • PDF

Dual-Band Frequency Reconfigurable Small Eighth-Mode Substrate-Integrated Waveguide Antenna (이중 대역 주파수 가변 1/8차 소형 기판집적형 도파관 안테나)

  • Kang, Hyunseong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • In this paper, we propose a new frequency reconfigurable dual-band antenna. By using an electronically compact eighth-mode substrate-integrated-waveguide(EMSIW) resonator, we have designed a compact antenna, which performs dual-band movement by additionally loading a complementary split ring resonator(CSRR) structure. The EMSIW and CSRR structures are designed to satisfy the bandwidths of 1.575 GHz(GPS) and 2.4 GHz(WLAN), respectively. We load the CSRR with a varactor diode to allow a narrow bandwidth and to enable the resonance frequency to continuously vary from 2.4 GHz to 2.5 GHz. Thus, we realize a channel selection function that is used in the WLAN standards. Irrespective of how a varactor diode moves, the EMSIW independently resonates so that the antenna maintains a fixed frequency of the GPS bandwidth even at different voltages. Consequently, as the DC bias voltage changes from 11.4 V to 30 V, the resonance frequency of the WLAN bandwidth continuously changes between 2.38 GHz and 2.5 GHz, when the DC bias voltage changes from 11.4 V to 30 V. We observe that the simulated and the measured S-parameter values and radiation patterns are in good agreement with each other.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.