• Title/Summary/Keyword: Split tension

Search Result 52, Processing Time 0.025 seconds

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

A Case Study on Pillow Talk(1959) and Down with Love(2003): Split Screen in Romantic Comedy Films (<필로우 톡>(1959)과 <다운 위드 러브>(2003): 로맨틱 코미디 영화의 화면 분할)

  • Chang, Woo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.80-93
    • /
    • 2014
  • This paper examines how split-screen technique works to meet the goals and strategies of the narrative in the romantic comedy films which deal with love and sex. The plot of romantic comedy films aims to the union and marriage of the couple, but is structured to delay the union as much as possible through comical situations and episodes. Usually split-screen scenes are placed before plot point 2 and serve to make a laugh and humor. Besides, it helps focusing on two main characters. Comedy related to love and sex comes from information gap between two main characters which can cause a tension, double meaning of spoken words and combination of split-screen images. Michael Gordon's Pillow Talk(1959) and Peyton Reed's Down with Love(2003) are reviewed in this study.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Tension Stiffening Effect Considering Cover Thickness in Reinforced Concrete Tension Members (피복두께를 고려한 철근콘크리트 인장부재의 인장증강효과)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.791-797
    • /
    • 2011
  • This paper presents the test results of 12 direct tensile specimens to investigate the effect of cover thickness on the tension stiffening behavior in axially loaded reinforced concrete tensile members. Six concrete cover thickness ratios are selected as a main experimental parameter. The results showed that, as cover thickness became thinner, more extensive split cracking along the reinforcement occurred and transverse crack spacing became smaller, making the effective tensile stiffness of thin specimens at the stabilized cracking stage to be much smaller than that of thick specimens. This observation is not implemented in the current design provisions, in which the significant reduction of tension stiffening effect can be achieved by applying thinner cover thickness. Based on the present results, a modified tension stiffening factor is proposed to account for the effect of the cover thickness.

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms

  • Lee, Jun-Ho;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.5-107
    • /
    • 2002
  • In this paper, a kinematic optimal design of a new paralleltype rolling mill based upon two Stewart platforms manipulator is investigated. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. A manipulability measure, as the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

  • PDF

An Estimation Procedure for Concrete Modulus by Using Concrete Strength Relationships in the LTPP Test Sections (콘크리트 물성 정량화식을 이용한 LTPP 구간의 탄성계수 추정방법)

  • Yang, Sung-Chul;Cho, Yoon-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • Concrete strength relationship between various strength properties was presented through experimental data from concretes made from different sources of coarse aggregates and fine aggregates, and different amount of cement contents. In the strength relationship were included compression-flexure, compression-split tension, compression-modulus and flexure-split tension. A total of 61~81 data sets were analyzed while each data set is composed of 3 to 4 experimental test data. Using the proposed strength relations, a procedure to reliably estimate modulus values from the LTPP field test section was suggested. Core specimens were taken from 10 LTPP sections on the expressway as well as 4 sections on the national road. Then compressive strengths and modulus were determined in the lab. Finally concrete modulus was averaged with the estimated values by using the derived relationship and experimental values.

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

GONIAL ANGLE REDUCTION DURING MANDIBULAR SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지 시상 분할골절단술과 동시에 시행되는 우각부 절제술)

  • Kim, Jae-Seung;Chang, Hyun-Ho;Ryu, Sung-Ho;Kang, Jae-Hyun;Lee, Seung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.3
    • /
    • pp.258-265
    • /
    • 2001
  • A prognathic mandible and prominent gonial angle are considered to be unattractive in the Orient because it gives the face a square and muscular appearance. Requests for contouring of the mandibular angle are rare in the other race but are much more common in Korea and, through out the Orient. So, we often encounter a patient with a prognathic mandible and squarish or broad face who wishes to have his or her facial size reduced minimally or to acquire a round or slender appearance. But, mandibular angle is located in the deepest part of the operative field and the strong tension of the lateral soft tissue makes retraction difficult. It is extremely difficult to reduce the gonial angle with sagittal split ramus osteotomy by intraoral approach at the same time. We apply the method of gonial angle reduction during SSRO and had satisfactory results. We will present our results and hope to give some useful information for management of mandibular deformity.

  • PDF

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF