• Title/Summary/Keyword: Split ring resonator (SRR)

Search Result 41, Processing Time 0.021 seconds

Design of a Frequency Selective Surface Using DSRRs (DSRR을 이용한 주파수 선택적 표면 설계)

  • Woo, Dae-Woong;Kim, Jae-Hee;Ji, Jeong-Keun;Kim, Gi-Ho;Seong, Won-Mo;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.194-201
    • /
    • 2010
  • We propose a frequency selective surface(FSS) using double split ring resonators(DSRRs) for isolation enhancement between CDMA and RFID. The structure consists of an outer SRR and an inner SRR, and the gaps are formed in the same direction. By properly adjusting the gap and line width, the resonant frequency and skirt characteristics can be adjusted without varying the unit cell size. The proposed structure has a different field distribution from that of an ordinary SRR for magneto-dielectric materials. One layer consists of $9{\times}9$ unit cells and the other layer was separated by 50 mm. To validate the simulation results, we fabricated the patch antenna and the FSSs, and the measured results show a good agreement with the simulated ones. The electrical size of the unit cell is $0.110\;{\lambda}{\times}0.110\;{\lambda}{\times}0.002\;{\lambda}$, and the size of the two layer FSS is $1.058\;{\lambda}{\times}1.058\;{\lambda}{\times}0.153\;{\lambda}$. The two layer FSS maintain gain in CDMA frequency and has 6.9 dB reduced gain in RFID frequency.

New Split Ring Resonator and Band-pass Filter Using Meta-Material (메타 인공 물질을 이용한 새로운 Split-Ring 공진기 및 대역통과 필터)

  • Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • In this paper, a new split ring resonator using left-handed meta-material adapted in a bandpass filter with 2-stages is suggested. In this proposed bandpass filter, the size of the novel resonator can be easily controlled. Also, the bandwidth can be adjusted with the position of the tapped-line. The proposed resonator and filter has the center frequency of 10 GHz for I-band in military-satellite communication system with the Qe value of 184. The experimental results of the filter show that the insertion and return losses are 1.43 dB and 16.8 dB with bandwidth of 10 %, respectively.

Design of a Metamaterial Unit Cell Using an Interdigital Capacitor with Non-Bianisotropic Property (Non-Bianisotropy 특성을 갖는 IDC로 구성된 메타 물질 단위 셀 설계)

  • Kwon, Kyeol;Ha, Jae-Geun;Lee, Young-Ki;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.402-405
    • /
    • 2012
  • In this paper, we proposed a novel metamaterial unit cell utilizing an interdigital capacitor(IDC) with non-bianisotropic property. Due to the induced magnetic resonance of an IDC unit cell, exotic effective constitutive parameters can be realized like a split ring resonator(SRR). Furthermore, the proposed unit cell is electrically smaller than a conventional SRR unit cell. The effective parameters retrieved from the transmission responses of waveguide measurement method and simulated results show good agreement.

Miniatured Planar Bandpass Filter Using Coupled Metamaterial Resonators

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.256-259
    • /
    • 2011
  • In this article, new microstrip slow-wave bandpass filters using open loop resonator loaded with inter-digital capacitive fingers is proposed. The filter features not only compact in size, but also exhibits spurious stop-band rejection. Filters of this type with elliptic function and Chebyshev response are demonstrated. There is good agreement between experimental and full-wave electromagnetic (EM) simulation results.

Millimeter-Wave Dielectric Resonator Antennas for the Anti-Collision Car Radar System (차량 충돌 방지 레이더 시스템용 밀리미터파 유전체 공진기 안테나)

  • Park, Young Bon;Jung, Young Ho;Seok, Chang Heon;Lee, Mun Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.41-49
    • /
    • 2013
  • This paper suggests the dielectric resonator antenna using LTCC process for mm-wave car radar system. In this paper, dielectric resonator antennas (DRA) operated in 76-77 GHz frequency band are designed. And, using the LTCC process, the structures of dielectric resonator with SRR (split ring resonator) inside and those of dielectric resonator with probe inside are suggested. Linear polarization antennas and circular polarization antenna are designed for the DRA with probe inside. Three kinds of the DRA antennas are designed and their characteristics are calculated using CST RF simulation tool. The designed antennas are fabricated and measured and the measured results are compared with calculated results. The measured operating frequencies of DRAs are within 76 GHz to 77 GHz, which are close to the calculated results, and the measured gains are about 8.15 dBi to 10.82 dBi.

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Miniatured Planar Bandpass Filter Using the Coupled Metamaterial Resonators (결합 메타물질 공진기를 이용한 소형화된 평면구조 대역통과여파기)

  • Xie, Tang-Yao;Park, Young-Bea;Kim, Gi-Rae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.371-374
    • /
    • 2010
  • In this article, new microstrip slow-wave bandpass filters using open loop resonator loaded with inter-digital capacitive fingers is proposed. The filter features not only compact in size, but also exhibits spurious stop-band rejection. Filters of this type with elliptic function and Chebyshev response are demonstrated. There is good agreement between experimental and full-wave electromagnetic (EM) simulation results.

  • PDF

Optimum Design of a Dual-Band Microstrip Patch Antenna using the Square CSRR Construction (CSRR 구조 이중대역 마이크로스트립 패치안테나의 최적 설계)

  • Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In this paper, dual band patch antenna was designed using a CSRR structure with negative values permeability which inserted into the ground plane. We propose an antenna that can be used in dual band f1(1.53GHz) and f2(1.63GHz) for satellite communications by using the CSRR placed on the backside of feeding line, which is a negative shape of SRR. The proposed antenna can be arrayed using microstrip line and can be made smaller than conventional patch antenna. The fabricated antenna has the input reflection coefficient of -12.5dB and -14.5dB at f1 and f2, and the gain of 2dB and -0.8dB, respectively. and it was confirmed that the performance was sufficient in the dual-band.

Low Phase Noise VCO using Output Matching Network Based on Harmonic Control Circuit (고조파 조절 회로를 기반으로 한 출력 정합 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • In this paper, a novel voltage-controlled oscillator(VCO) using the output matching network based on the harmonic control circuit is presented for improving the phase noise property. The phase noise suppression is achieved through the harmonic control circuit having the short impedances for both second-harmonic and third-harmonic components, which has been connected at the output matching network. Also, we have used the microstrip square open loop multiple split-ring resonator(OLMSRR) having the high-Q property to further reduce the phase noise of VCO. Because the output matching network based on the harmonic control circuit has been used for reducing the phase noise property instead of the High-Q resonator, we can obtain the broad tuning range by the low-Q resonator. The phase noise of the proposed VCO using the output matching network based on the harmonic control circuit and the microstrip square OLMSRR has been $-127.5{\sim}126.33$ dBc/Hz @ 100 kHz in the tuning range, $5.744{\sim}5.839$ GHz. Compared with the reference VCO using the output matching network without the harmonic control circuit and the microstrip line resonator, the phase noise property of the proposed VCO has been improved in 26.66 dB.