• Title/Summary/Keyword: Split Beam

Search Result 148, Processing Time 0.028 seconds

The Relative and Absolute Speed of Radiographic Screen-Film Systems (증감지(增感紙)-필름계(系)의 상대감도(相對感度)와 절대감도(絶對感度)에 관한 실험(實驗))

  • Huh, Joon;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.16 no.1
    • /
    • pp.67-80
    • /
    • 1993
  • Recently, a large number of new screen-film systems have become available for use in diagnostic radiology. These new screens are made of materials generally known as rare-earth phosphors which have high x-ray absorption and high x-ray to light conversion efficiency compared to calcium tungstate phosphors. The major advantage of these new systesms is reduction of patient exposure due to their high speed or high sensitivity. However, a system with excessively high speed can result in a significant degradation of radiographic image quality. Therefore, th speed is important parameters for users of these system. Our aim of in this was to determine accurately and precisely the absolute speed and relative speeds of both new and conventional screen-film system. We determined the absolute speed in condition of BRH phantom beam qulity and the relative speed were measured by a split-screen technique in condition of BRH and ANSI phantom beam qulity. The absolute and the relative speed were determined for 8 kinds of screen-4 kinds of film in regular system and 7 kinds of screen-7 kinds of film in ortho system. In this study we could know the New Rx, T-MAT G has the highest film speed, also know Green system's stndard deviation of relative speed larger than blue system. It was realized that there were no relationship between the absolute speed and the blue system. It was realized that there were no relationship between the absolute speed and the relative speed in ortho or regular system.

  • PDF

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The InAs self-assembled quantun dots (SAQDS) were grown on a GaAs(100) substrate using a molecular beam epitaxy (MBE) technique. The InAs QDs were multi-stacked to have various layer structures of 1, 3, 6, 10, 15 and 20 layers, where the thickness of the GaAs spacer and InAs QD layer were 20 monolayers (MLs) and 2 MLs, respectively. The nanostructured feature was characterized by photoluminescence (PL) and scanning transmission electron microscopy (STEM). It was found that the highest PL intensity was obtained from the specimen with 6 stacking layers and the energy of the PL peak was split with increasing the number of stacking layers. The STEM investigation exhibited that the quantum dots in the 6 stacking layer structure were well aligned in vertical columns without any deflect generation, whereas the volcano-like deflects were formed vertically along the growth direction over 10 periods of InAs stacking layers.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Bone regeneration and graft material resorption in extraction sockets grafted with bioactive silica-calcium phosphate composite (SCPC) versus non-grafted sockets: clinical, radiographic, and histological findings

  • Adel-Khattab, Doaa;Afifi, Nermeen S.;el Sadat, Shaimaa M. Abu;Aboul-Fotouh, Mona N.;Tarek, Karim;Horowitz, Robert A.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.418-434
    • /
    • 2020
  • Purpose: The purpose of the present study was to evaluate the effect of silica-calcium phosphate composite (SCPC) granules on bone regeneration in extraction sockets. Methods: Ten patients were selected for a split-model study. In each patient, bone healing in SCPC-grafted and control ungrafted sockets was analyzed through clinical, radiographic, histomorphometric, and immunohistochemical assessments 6 months postoperatively. Results: A radiographic assessment using cone-beam computed tomography showed minimal ridge dimension changes in SCPC-grafted sockets, with 0.39 mm and 1.79 mm decreases in height and width, respectively. Core bone biopsy samples were obtained 6 months post-extraction during implant placement and analyzed. The average percent areas occupied by mature bone, woven bone, and remnant particles in the SCPC-grafted sockets were 41.3%±12%, 20.1%±9.5%, and 5.3%±4.4%, respectively. The percent areas of mature bone and woven bone formed in the control ungrafted sockets at the same time point were 31%±14% and 24.1%±9.4%, respectively. Histochemical and immunohistochemical analyses showed dense mineralized bundles of type I collagen with high osteopontin expression intensity in the grafted sockets. The newly formed bone was well vascularized, with numerous active osteoblasts, Haversian systems, and osteocytes indicating maturation. In contrast, the new bone in the control ungrafted sockets was immature, rich in type III collagen, and had a low osteocyte density. Conclusions: The resorption of SCPC granules in 6 months was coordinated with better new bone formation than was observed in untreated sockets. SCPC is a resorbable bone graft material that enhances bone formation and maturation through its stimulatory effect on bone cell function.

Skeletal and dentoalveolar effects of different types of microimplant-assisted rapid palatal expansion

  • Hyeong-Yoon Choi;Sang-Min Lee;Jin-Woo Lee;Dong-Hwa Chung;Mo-Hyeon Lee
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.241-253
    • /
    • 2023
  • Objective: To evaluate the following null hypothesis: the skeletal and dentoalveolar expansion patterns in the coronal and axial planes are not different with two different types of microimplant-assisted rapid palatal expansion (MARPE) systems. Methods: Pretreatment (T0) and post-MARPE (T1) cone-beam computed tomography (CBCT) images of 32 patients (14 males and 18 females; mean age, 19.37) were analyzed. We compared two different MARPE systems. One MARPE system included the maxillary first premolars, maxillary first molars, and four microimplants as anchors (U46 type, n = 16), while the other included only the maxillary first molars and microimplants as anchors (U6 type, n = 16). Results: In the molar region of the U6 and U46 groups, the transverse expansion at the midnasal, basal, alveolar, and dental levels was 2.64, 3.52, 4.46, and 6.32 mm and 2.17, 2.56, 2.73, and 5.71 mm, respectively. A significant difference was observed in the posterior alveolar-level expansion (p = 0.036) and posterior basal-bone-level expansion (p = 0.043) between the groups, with greater posterior skeletal and alveolar expansion in the U6 group. Conclusions: Compared with the U46 group, the U6 group showed greater posterior expansion at the alveolar and basal-bone levels, with an almost parallel split. Both groups showed a pyramidal expansion pattern in the coronal view.

The Vertical Changes of Lip and Perioral Soft Tissue Following Orthognathic Surgery in Skeletal Class III Patients by a Cephalometric Analysis of Cone Beam Computed Tomography (Cone Beam Computed Tomography의 두부계측분석을 통한 골격성 제3급 부정교합 환자에서 악교정 수술 후 입술과 주위 연조직의 수직적 변화)

  • Lee, Jong-Min;Kang, Joo-Wan;Lee, Jong-Ho;Kim, Chang-Hyen;Park, Je Uk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.311-319
    • /
    • 2012
  • Purpose: The aim of this study is to evaluate the vertical changes of the lip and perioral soft tissue, following orthognathic surgery in skeletal class III patients by a cephalometric analysis of a cone beam computed tomography (CBCT). Methods: A total of 20 skeletal class III patients, who had bimaxillary surgery with Le Fort 1 osteotomy and bilateral sagittal split ramus osteotomy, were included in this study. The surgical plan for maxilla was posterosuperior impaction with the anterior nasal spine, as the rotation center. Further, the surgical plan for mandible was also posterosuperior movement. The soft tissue changes between lateral cephalogram and CBCT were compared. And the correlations between independent variables and dependent variables were evaluated. Results: There were no significant differences of the soft tissues changes between lateral cephalogram and CBCT. Upper lip philtrum length (SnLs), nasolabial angle increased and upper lip vermilion length (LsStms), lower lip length (StmiB'), lower lip vermilion length (StmiLi), lower lip philtrum length (LiB') and soft tissue lower facial height (SnMe') decreased after surgery. Change of SnLs (${\Delta}$SnLs) was influenced by vertical change of menton (${\Delta}$MeV), and change of LsStms (${\Delta}$LsStms) was influenced by upper lip thickness (ULT). Change of StmiLi' (${\Delta}$StmiLi') were influenced by preoperative overjet. Change of StmiB' (${\Delta}$StmiB') were influenced by preoperative overjet, vertical change of lower incisor (${\Delta}$L1V) and horizontal change of posterior nasal spine (${\Delta}$PNSH). Change of LiB' (${\Delta}$LiB') was influenced by ${\Delta}$L1V and ${\Delta}$PNSH. Change of SnMe' (${\Delta}$SnMe') was influenced by ${\Delta}$MeV, horizontal change of upper incisor (${\Delta}$U1H) and horizontal change of lower incisor (${\Delta}$L1H). ${\Delta}$Nasolabial angle was influenced by change of ULT (${\Delta}$ULT). Conclusion: Both soft tissues and hard tissues can be evaluated by CBCT. Posterosuperior rotation of maxillomandibular complex resulted in increase of upper lip philtrum length and nasolabial angle, while the upper lip vermilion length, lower lip philtrum length, lower lip vermilion length, and soft tissue lower facial height showed a decrease.

Target strength of fishes for estimating biomass -Distribution characteristics and target strength measurement of micronektonic fish, Maurolicus muelleri in the East Sea (자원량 추정을 위한 어체의 반사강도에 관한 연구 -동해남부해역의 앨퉁이(Maurolicus muelleri)의 분포특성 및 반사강도 측정)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.404-409
    • /
    • 1999
  • The in situ target strengths of, maurolicus muelleri were measured by the split beam echo sounder system at the frequency of 38kHz.Target strengths were measured during the night time in order to obtain the pure separated echoes from the scattered individual. And also it was to establish reasonable threshold due to taking the signals like as the planktons and etc.Since Maurolicus muelleri is a typical micronektonic fish, they mainly consisted of deep scattering layers(DSLs), and had a vertical migration perrodically during daytime and at night.We found that the Maurolicus muelleri occupied about 99% of total catch. Total length ranged from 4.5 to 5.7cm with a mean of 5.2cm and a standard deviation of 0.22cm.The target strengths of Maurolicus muelleir ranged from -60.4 to - 52.7dB and -59.2 to - 52.5 dB in the water layer of 10~30m and 30~50m depth, perspectively. Mean target strength was -57.1dB/fish and -28.5dB/kg. The target strength had the relation with the total length of the fish as, TS=20logL-71.4.

  • PDF