• Title/Summary/Keyword: Spirillum

Search Result 3, Processing Time 0.017 seconds

Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor (정수처리용 생물활성탄(BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성)

  • Son, Hee-Jong;Jung, Chul-Woo;Choi, Young-Ik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.699-705
    • /
    • 2010
  • In this study, three different biological activated carbons (BACs) were prepared from activated carbons made of each coal (F400, Calgon), coconut (Samchully) and wood(Pica, Picabiol) which were run for two and half years in the pilot plant. The attached bio-film microorganisms in and on the BACs were isolated and identified. The results showed that nine different bacteria species (Chryseomonas luteola, Stenotrophomonas maltophilia, Pseudomonas vesicularis, Aeromonas hydrophila, Spingomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas fluorescens, Spirillum spp., and Pasteurella haemolytica) were isolated and identified, the dominant species was Pseudomonas sp. that had occupied 56.5%. More specifically, it was observed that the populations of the microorganisms deceased in the order: Pasteurella haemolytica (18.9%) > Chryseomonas luteola (4.0%) > Agrobacterium radiobacter (3.5%) > Aeromonas hydrophila (2.0%) in and on the BACs. After isolating of 9 species of biofilm microorganisms, the growth curve for the biomass was investigated. During 24~96 hours, the biomass has the highest concentration, and activity of the biomass was the best to uptake geosmin as carbon resources. The operation temperatures for investigating the biodegradation of geosmin were set at $4^{\circ}C$ and $25^{\circ}C$. Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter and Stenotrophomonas maltophilia played a maior role in removing the target compound as geosmin. However, geosmin was not biodegraded well by Chryseomonas luteola, Spingomonas paucimobilis, and Spirillum spp.. It is also interesting to evaluate kinetics of biodegradability of geosmin. The first-order rate constants for biodegradability of geosmin at $4^{\circ}C$ and $25^{\circ}C$ were $0.00006{\sim}0.0002\;hr^{-1}$ and $0.0043{\sim}0.0046\;hr^{-1}$ respectively. Higher water temperature produced better geosmin removal rates. When concentrations of geosmin increased from 10 to 10,000 ng/L, the rate constants for biodegradability of geosmin increased from 0.0003 to $0.0882\;hr^{-1}$. As described earlier, higher geosmin concentration in the reactor produced higher rate constant.

Development of Benthic Community on an Artificial Reef Complex, Jeju Island, Korea

  • Yi, Soon-Kil;Huh, Hyung-Tack;Je, Jong-Geel;Kim, Dae-Gwen
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.255-264
    • /
    • 2001
  • Development process of benthic community on experimental substrata attached on a newly installed artificial reef complex in Jeju Island was observed for 27 months from 1992 to 1994. Among 34 species of algae and 64 species of zoobenthos obtained from the study, Ecklonia cava dominated with a maximum biomass of about $10kg/m^2$. It was able to smother the other animals, however it provided a new substrate for the new settlers. Opportunistic bryzoans such as Likenopora radiata and Dexiospira spirillum occurred during the early stage were substituted by poriferans, banacles and other bryzoans. Young barnacles were smothered by bryozoans, on the contrary, bryozoans were bulldozed by adult barnacles. No apparent differences have been observed between vertically and horizontally installed substrates in terms of species composition and biomass during the early stage of succession. Thereafter owing to the rapid growth of E. cava, the horizontal substrata carried on a higher biomass while the vertical showed a higher coverage. The benthic process on the experimental substrata can be classified into three stages: initial stage, build up stage and regulatory stage. Important mechanisms involved were canopying of E. cava, suffocation by bryozoans and poriferans, and bulldozing of adult barnacles.

  • PDF

Analysis of fungal hyphae, distribution and motility of bacteria in oral cavity according to halitosis (구취에 따른 구강 내 형태별 세균의 분포 및 운동성, 진균 균사 분석)

  • Kim, Do Kyeong;Byeon, You-Kyeong;Choi, Hyun-Ji;Lee, Ga-Ram;Choi, Yu-Ri;Choi, Yu-Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Halitosis is primarily caused by bacterial decay. The bacteria, which originate from biofilms such as dental plaque, show abnormal proliferation due to dental caries, periodontal diseases, soft tissue infections, and tongue diseases. Most studies on halitosis have exclusively focused on gram-negative bacteria in the oral cavity rather than on general oral microorganisms including oral fungi. This study analyzed oral fungal hyphae, as well as distribution and motility of oral microorganisms, and provided basic data on the control of halitosis. Our results revealed that the greater is the number of cocci bacteria, the higher is the halitosis value, or bad breath value (BBV), suggesting that cocci have a strongly positive correlation with halitosis (r=0.379, p=0.030). Moreover, there was no significant difference in the morphology or distribution of motile bacteria and motility score, with respect to BBV. Lastly, we investigated the relationship between halitosis and oral fungal hyphae. We found that a higher BBV corresponded with a greater number of fungal hyphae and that patients with fungal hyphae scored a higher BBV. However, this result was not statistically significant. In conclusion, this study provided the preliminary data on oral microorganisms and halitosis, but further studies are needed to analyze the relationship between oral microorganisms and halitosis.