• Title/Summary/Keyword: Spiral antennas

Search Result 25, Processing Time 0.021 seconds

Size reduction of patch antennas using shorting post and spiral shape (Shorting Post와 Spiral 모양을 이용한 소형 패치 안테나 설계)

  • Cho, Young-Sang;Sung, Young-Je;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.492-495
    • /
    • 2003
  • This paper presents a novel method to reduce the size of microstrip patch antennas using shorting post and spiral shape. The spiral conductor shape of the proposed shorted patch antennas increases the length of the current patch for a given area. Two spiral shaped patch antennas with shorting post operating at 700 MHz bands are investigated experimentally.

  • PDF

Miniaturization of an Ultra-Wideband Antenna with Two Spiral Elements

  • Hong, Seok-Jin;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.71-73
    • /
    • 2009
  • In this letter, novel antennas with two spiral elements are presented for ultra-wideband application. The original antenna consists of a T-shaped microstrip feed line, two spiral radiating elements, and a ground plane with two circular slots. It measures 30 mm ${\times}$ 40 mm ${\times}$ 1.6 mm. Spiral elements are used to increase the lower bandwidth limit. To further reduce the size of the antenna, the original antenna is cut in half by using the symmetry of the surface current distributions. The proposed antennas feature omnidirectional radiation patterns and good gain flatness.

  • PDF

Multi-Functional Microstrip Spiral Antenna : Dual-Band Operation and Multi-Pattern Control (다양한 복사패턴을 가지는 이중대역용 다기능 마이크로스트립 스파이럴 안테나)

  • 김명기;오대영;박익모
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.77-84
    • /
    • 2003
  • This paper presents a multi-functional microstrip spital antenna that operates in dual frequency bands. Several types of beam shape can be selected by controlling the phase difference of two spiral arms with the phase shifters located on each feed line. It has a normal beam at the lower frequency band, and four different patterns at the higher frequency band: normal beam, conical beam and two types of tilted beam. The antenna exhibits more than 10% of bandwidth at each band. The antenna is fabricated with conductor backed electromagnetic absorber in order to attain unidirectional radiation pattern and confirmed the multi-functionality by measurements.

A Planar Spiral Antenna of Multi-Tabs for Wireless Power Transmission of Inductive Coupling (전자기 유도 방식 무선 전력 전송을 위한 다중 탭을 갖는 평판형 스파이럴 안테나)

  • Kim, Jin-Wook;Son, Hyeon-Chang;Jeong, Seung-Ho;Kim, Seung-Gyun;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.753-760
    • /
    • 2009
  • In this paper, a novel planar spiral antenna of multi-tabs is proposed for wireless power transmission system based on low frequency magnetic inductive coupling. The proposed antenna has higher transmission efficiency than conventional antennas such a rectangular spiral antenna and a spiral antenna. Also, it has a useful property of uniform power transmission in the region of the antenna aperture. For verification, a transmitting antenna and a receiving one for a wireless power transmission system using magnetic inductive coupling of 132 kHz low frequency are designed and tested. The transmitting antenna has three-tabs spiral of unequal-space for higher uniform magnetic coupling in the antenna aperture. For reducing the receiving antenna size, two receiving antennas of unequal space two-tabs on one-side and series double sides as well are designed, respectively. From measurement, transmission efficiency of the proposed antennas is improved up to $3{\sim}10$ dB compared to conventional antennas.

Two-Arm Microstrip Spiral Antenna with a Circular Slot on the Ground Plane (접지면에 원형 슬롯이 있는 양팔 마이크로스트립 스파이럴 안테나)

  • 오대영;김명기;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.468-474
    • /
    • 2002
  • In this paper a novel two-arm microstrip spiral antenna with a circular slot on the ground plane is presented. The proposed antenna structure is constructed in a planar form without a balun circuit and the radiation characteristics of conventional and eccentric spiral antennas are obtained simultaneously. The main beam direction is normal to the plane of the spiral for characteristic frequency band and the direction of the main beam moves linearly into $\theta$ and $\phi$ direction as the frequency increases.

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.

Analysis and Design of a Spiral Antenna using Moment Method (모먼트법을 이용한 스파이럴 안테나의 해석 및 설계)

  • 한정세;이갑수;박병우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.857-871
    • /
    • 1994
  • In this paper, six kinds of spiral antenna, a combination of two types of spiral arm-width and three types of spiral curvature are analyzed by using moment method. Dividing spiral arms into N sections, the current distribution is calculated by Galerkin`s method. The radiation pattern and the antenna gain are derived from antenna currents. All os the six spiral antenna have amni-dirctional and wide-band characteristics, although the antenna gain changes within +_ 5dB bound for operating range(600MHz-2GHz). The variation of antenna`s gain is caused by the return loss in connection the Balun to the antenna. Simulation and experimental results on the radiation pattern also show spiral antennas have omni-directional and wide-band characteristics.

  • PDF

A Study on Antenna Characteristics for Efficiently Detecting Human Sign (효율적인 인체신호 검출을 위한 안테나 특성 연구)

  • Jang, Dong-Won;Choi, Jae-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.484-487
    • /
    • 2014
  • In this paper, We describe antenna characteristics for efficiently detecting human signs using small, planar and low power antenna. Then we can measure biological signals including respiration, heart rate, blood pressure, and blood sugar, using UWB (Ultra Wide Band) pulses, while does not contact the human body. The antenna need stable and wideband impedance characteristic, because it use gaussian pulse signal. Usually it has trade-off between wideband impedance and gain. But we don't considered array type antennas because we want to need small size. Generally the antennas that classified as frequency independent satisfy our requirements. Frequency independent antennas include spiral, log-periodic, sinuous, and etc. These antennas are possible to have shape planar type. In this paper, We tested these kind antenna's characteristics in center frequency 5 GHz, Especially circular patch and sinuous antenna designed and analyzed.

  • PDF

Study on the Uniformity of Plasma Density at TCP Using Parallel Antennas (병렬 안테나에 따른 플라즈마원의 균일도 연구)

  • 배근희;서상훈;장홍영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.273-276
    • /
    • 1998
  • Three different parallel antennas are designed to investigate plasma uniformity and magnetic field using a double Langmuir probe and a magnetic probe. Butterfly antenna has the highest density of ~~$2\times10^{11}(\textrmcm^{-3})$ among the three antennas and has electron temperature less than 2 eV, lower than the spiral antenna. It is found that the power efficiency becomes lower with spaced parallel antenna elements due to oppositely directed currents and positive coupling.

  • PDF

A Superconducting $Y_1Ba_2Cu_3O_{7-\delta}$ Square Spiral Microstrip Antenna

  • Jung, Sung-H.;Song, Ki-Y.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.51-55
    • /
    • 2000
  • A $Y_1Ba_2Cu_3O_{7-\delta}$ square spiral microstrip antenna (YBCO antenna) was epitaxially grown on a $LaAlO_3$ substrate by laser ablation. Also fabricated was a gold square spiral microstrip antenna (gold antenna) having the same structure as that of the YBCO antenna in order to compare the properties of both antennas. Both the YBCO antenna and the gold antenna were operated in Ku (12-18 GHz) band, and their properties such as the return loss, SWR, power gain, and radiation patterns were investigated at 77 K. The return loss below -10 dB was obtained in two frequency ranges, i.e., 14.05-14.90 GHz, and 16-18 GHz for the YBCO antenna at 77 K (YBCO superconducting antenna), and in the frequency range of 15.05-17.60 GHz for the gold antenna at 77 K. The SWR bandwidths are 0.85 GHz and 2 GHz for the YBCO superconducting antenna, and 2.55 GHz for the gold antenna at 77 K. The gain improvement of the superconducting YBCO antenna over the gold antenna at 77 K was about 10 dB in the frequency range of 16 GHz to 18 GHz. The radiation patterns show the YBCO superconducting antenna has the omni-directional property of a spiral antenna.

  • PDF