• 제목/요약/키워드: Spinning

검색결과 1,048건 처리시간 0.022초

고속방사 PET filament의 열처리에 따른 수축 및 Creep 거동에 관한 연구 (Shrinkage and Creep Behavior of Annealed PET Filament in High Speed Spinning)

  • Park, Young-Kun;Koo, Ja-Gil;Chang, Dong-Ho
    • 한국염색가공학회지
    • /
    • 제9권4호
    • /
    • pp.7-19
    • /
    • 1997
  • The purpose of the study was to investigate the shrinkage and creep behavior of PET filaments which were prepared at various spinning speeds(3,300, 4,000, 5,000, 6,000, and 7,000m/min) and anneal($120^{\circ}$, 30min & $150^{\circ}$, 40min). In order to determine the shrinkage and creep behavior with the crystallinity change, PET filaments were treated with low(12$0^{\circ}C$, 30min) and high($150^{\circ}$, 40min) temperature conditions with hot air dryer under the constant tension. The results of the study were as follows: as the spinning speed increased, the degree of shrinkage and elongation of the sample treated by wet condition decreased. The sample with 0.01g/d of load under various spinning speeds showed shrinkage behavior and highest shrinkage ratio at $76^{\circ}$ which was Tg of PET. The degree of shrinkage and elongation of the treated sample was less than those of the untreated sample by wet treatment. Especially, there was less degree of shrinkage and elongation of the sample treated by higher temperature condition. In 3,300m/min of spinning speed the draw ratio of undrawn yarn of a mixture of a-axis orientation and c-axis orientation was 2.0, which is similar to the value of the traditional drawn yarn. Finally, there was a big range of shrinkage and elongation by wet treatment in 3,300 m/min of spinning speed.

  • PDF

Analysis of the effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method

  • Shin Dong Myeong;Lee Joo Sung;Jung Hyun Wook;Hyun Jae Chun
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.63-69
    • /
    • 2005
  • The stability of low-speed spinning process exhibiting spinline flow-induced crystallization (FIC) with no neck-like spinline deformation has been investigated using the method of linear stability analysis. Effects of various process conditions such as fluid viscoelasticity and the spinline cooling on the spinning stability have been found closely related to the development of the spinline crystallinity. It also has been found that the FIC makes the system less stable or more unstable than no FIC cases when the spinline crystallinity reaches its maximum possible value, whereas the FIC generally stabilizes the system if the crystallinity doesn't reach its maximum value on the spinline. It is believed that the destabilizing effect of the FIC on low-speed spinning when the crystallinity is fully developed on the spinline is due to the reduction of the real spinning length available for deformation on the spinline. On the other hand, the increased spinline tension caused by the FIC when the maximum crystallinity is not reached on the spinline and thus no reduction in the spinning length occurs, makes the sensitivity of spinline variables to external disturbances smaller and hence stabilizes the system. These linear stability results are consistent with the findings by nonlinear transient simulation, as first reported by Lee et al. (2005b).

회전원통 시스템에 의한 절연유의 대전특성 (Static Electirification of Insulation Oil Using the Spinning Cylinders)

  • 김두석;권동진;손철근;곽희로
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제8권4호
    • /
    • pp.55-62
    • /
    • 1994
  • 본 논문에서는 기존의 펌프나 가스를 이용한 강제유동식 시스템과는 달리 회전원통을 이용한 유동대전현상에 대하여 연구하여, 강제유동식에서의 대전특성과 비교, 분석하였다. 연구결과, 회전원통 시스템에서의 회전원통의 회전속도 및 온도에 따른 유동대전 특성은 강제유동식과 같은 경향을 보여 회전원통 시스템이 유동대전현상을 연구하는데 적합함을 알 수 있었다. 회전원통시스템은 강제유동식에 비하여 실험장치의 기계적 구조가 간단하고, 적은 양의 절연유만이 필요하며, 여러 가지 다른 물질로 실험하기가 비교적 편리하였다. 또한 대전 방지제의 첨가나 절연유의 열화에 따른 대전현상 등을 연속적으로 측정할 수 있는 특징이 있음을 알 수 있었다.

  • PDF

회전축 정렬불량을 고려한 유연회전디스크의 진동해석 (Vibration Analysis of a Flexible Spinning Disk Considering the effect of Misalignment)

  • 정진태;허진욱;최기영
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.952-959
    • /
    • 2002
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of relation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in -plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained fur the steady -state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out -of-plane displacement, which is discretized by the Galerkin method. Based on the discretized dquations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed.

Fabrication of mineral fiber via melt spinning method from blast furnace slag

  • Wang, Xiao-Song;Hur, Bo-Young
    • 한국결정성장학회지
    • /
    • 제24권4호
    • /
    • pp.158-163
    • /
    • 2014
  • Mineral fiber, or be called mineral wool when it assembles in large amounts, is a kind of wide applied man-made material with excellent thermal and acoustic insulation properties. In this work, mineral fiber was produced via melt spinning method by using iron blast furnace slag as raw material. Two critical experimental parameters for fabrication were investigated: melt pouring temperature and rotating speed of spinning wheels. The mineral fiber produced under the condition of melt pouring temperature $1500^{\circ}C$ and spinning speed 4000 rpm, showed the smoother surface and most quality, while the others had rough surfaces or with heavy shots. In general, mineral fibers with the size in the range of $12{\sim}49{\mu}m$ in diameter and 8~130 mm in length can be fabricated by this method, and the production rate is more than 34 wt.%, which could be up to 57 wt.% at maximum.

공기분사 전기방적 기술(Cyclone)을 이용한 Wool/Polyester 혼섬사 소재의 물성 및 염색성 (Physical Properties and Dyeability of Wool/Polyester Spun Blend Yarn and Its Fabrics Using Air Blowing and Electrostatic Spinning Technology(Cyclone))

  • 김미경;김동권;정재석;장봉식
    • 한국염색가공학회지
    • /
    • 제28권2호
    • /
    • pp.77-91
    • /
    • 2016
  • Recently, the spun blend yarns with staple fibers and filaments are being developed in the spinning process using an air blowing and electrostatic spinning technology(cyclone) in order to enhance the soft feeling and the fine count spun blend yarn manufacturing competitiveness. In this study, the appropriate separation condition of polyester multifilament was examined according to the treatment condition of conductive agents and voltage on polyester multifilament in the newly developed cyclone spinning process. And it was investigated the physical properties and dyeability of the cyclone wool/polyester spun blend yarns and its wool composite fabrics in comparison with existing sirofil wool/polyester spun blend yarn and its fabrics. As the result, it is determined that the newly developed cyclone wool/polyester spun blend yarn applied fabrics has a superior quality level in terms of practicality.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method

  • Jiang, Zhao;Ouyang, Ting;Yao, Xiangdong;Fei, Youqing
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.89-98
    • /
    • 2016
  • Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.

PET원사의 염착특성과 관련한 $TiO_2$ 함량, 원사의 강도 및 방사유제의 영향 (Effects of $TiO_2$ content, fiber strength and spinning oil on dyeing properties of the PET fibers)

  • 박영민;조대환;손영아
    • 한국염색가공학회지
    • /
    • 제18권3호
    • /
    • pp.10-15
    • /
    • 2006
  • In this research, we studied the dyeing properties of PET fibers in terms of $TiO_2$ contents, fiber strength and spinning oil which may cause barre' effect. The effect of $TiO_2$ contents in the fibers had no influence on the dye uptake. However, the reflectance(%) behaviors showed the different visual properties as $TiO_2$ contents in the fibers. The other factors could be considered as strength and spinning oil which also revealed difference on the dye exhaustion. The experimental results showed that $TiO_2$ contents within the fibers influenced reflectance(%) behaviors. Furthermore, fiber strength and spinning oil could be considered other major factors to impart the dyeing irregularity and barre' effect.