• 제목/요약/키워드: Spindle thermal drift

검색결과 9건 처리시간 0.025초

공작기계 주축 열변형 보정을 위한 실험방법에 관한 연구 (Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle)

  • 고태조;김희술;김형식;김선호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.375-379
    • /
    • 1997
  • Thermal drift of the machine tool spindle due to temperature increase dominates the major source of the machine tool error. To compensate the thermal errors, software based error correction methods could be implemented. In th~s case, we need model to map the relationship between temperature and thermal distortion. Traditionally, two or three different methods have been trled: step increase of spindle speed, constant, random. The latter two methods are described in the document of ISOlDIS230-3. In this research, three different methods were verified through the experiments from the viewpoint of compensation of thermal distortion. Constant spindle speed turned out good enough for monitoring the behavior of the thermal drift and modeling the relationship between temperature and thermal distortion.

  • PDF

수평 머시닝 센터의 준 정적 오차의 실시간 보정 (Real time compensation for quasistatic errors of a horizantal machining center)

  • 양승한
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

열적 환경변화에 의한 공작기계의 구조적 특성 (Thermal Deformation Characteristics of the Adaptive Machine Tools under Change of Thermal Environment)

  • 이재종;이찬홍;최대봉;박현구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.1023-1027
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

CNC 공작기계의 열변형 오차 보정 (I) - 보정장치 기초실험 - (Compensation of Thermal Error for the CNC Machine Tools (I) - The Basic Experiment of Compensation Device -)

  • 이재종;최대봉;곽성조;박현구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.453-457
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. In this study, the compensation device is manufactured in order to compensate thermal error of machine tools under the real-time. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

작업조건에 따른 공작기계의 열변형 특성 해석 (Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

공작기계 열변형의 실험적 보정에 관한 연구 (A Study on the Experimental Compensation of Thermal Deformation in Machine Tools)

  • 윤인준;류한선;고태조;김희술
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.16-23
    • /
    • 2004
  • Thermally induced errors of machine tools have been recognized as one of the most important issues in precision machining. This is probably the most formidable obstacle to obtain high level of machining accuracy. To this regard, the experimental compensation methodologies such as software-based method or origin shift of machine tool axes have been suggested. In this research, to cope with thermal deformation, a model based correction was carried out with the function of an external machine coordinate shift. Models with multi-linear regression or neural network were investigated to selected a good one for thermal compensation. Consequently, multi-linear regression model combined with origin shift was verified good enough form the machining of dot matrices of plate with ball end milling.

CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 - (Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller -)

  • 이재종;최대봉;박현구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정 (Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF