• Title/Summary/Keyword: Spindle system

Search Result 606, Processing Time 0.025 seconds

A Study on the Decrease of the Unclamping time using Hydraulic Circuit (유압 회로를 이용한 초고속 스핀들의 언클램핑(unclamping) 시간 저감 방안 연구)

  • Chung W.J.;Lee C.M.;Cho Y.D.;Whang Y.K.;Chung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1745-1748
    • /
    • 2005
  • According to the demand of the high productivity, the interest of manufacturing skills is growing in industrial society. Especially the high speed spindle in machining center becomes important these days. The exchange time of the tool in machining center usually calls T-T(tool to tool) time. Detailly explaning, It is influenced by the unclamping time. Affecting factors of the unclamping time are various(the hydraulic system, drawbar mass, a flow meter, disc spring, a piston diameter, pipe diameters, and so on). In this study, we could find factors that decrease the unclamping time and verify it for softwares.(AMESim $4.0^{(R)}$ & visual Nastran $4D^{(R)}$)

  • PDF

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Development of a Multi-Tasking Machine Tool for Machining Large Scale Marine Engine Crankshafts and Its Design Technologies (대형 선박엔진 크랭크샤프트 가공용 복합가공기 기술 개발)

  • An, Ho-Sang;Cho, Yong-Joo;Choi, Young-Hyu;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2012
  • A multi-tasking machine tool for large scale marine engine crankshafts has been developed together with design technologies for its special devices. Since work pieces, that is, crankshafts to be machined are big and heavy; weight of over 100 tons, length of 10 m long, and diameter of over 3.5 m, several special purpose core devices are necessarily developed such as PTD (Pin Turning Device) for machining eccentric pin parts, face place and steady rest for chucking and resting heavy work pieces. PTD is a unique special purpose device of open-and-close ring typed structure equipped with revolving ring spindle for machining eccentric pins apart from journal. In order to achieve high rigidity of the machine tool, structural design optimization using TMSA (Taguch Method based Sequential Algorithm) has been completed with FEM structural analysis, and a hydrostatic bearing system for the PTD has been developed with theoretical hydrostatic analysis.

A Study on the Reduction of Unclamping Time by Design of Experiments (실험계획법을 이용한 초고속 스핀들의 언클램핑 (unclamping) 시간 저감에 대한 최적 조건에 관한 연구)

  • Chung, Won-Jee;Cho, Young-Duk;Lee, Choon-Man;Jung, Dong-Won;Song, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • By the reason of increased demand of high productivity, the researches on manufacturing process and equipments for reducing cycle time have been made in many directions of a machine tool industries. Especially high productivity is very important to machining center with high-speed spindle. This paper proposed method of reducing T-T(tool to tool) time which results in shorter unclamping time. T-T time varies as factors such as a hydraulic system, a drawbar mass, a flow meter, a disc spring, piston and pipe diameters. In this paper We could find design factors has much influence on decreasing the unclamping time using DOE(Design of Experiment) and optimized the level of the factors using AMESim $4.0^{(R)}$ and visualNastran $4D^{(R)}$ Finally, we have verified improved result of the optimized factors with initial design.

A primo vessel-like structure in a dog with inflammatory pseudotumor

  • Cho, Sung-Jin;Hong, Sun-Hwa;Han, Sang-Jun;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.1
    • /
    • pp.77-82
    • /
    • 2012
  • Inflammatory pseudotumor (IPT) is a term defining a mass characterized microscopically by a proliferation of bland mesenchymal spindle cells infiltrated by diffuse mixed inflammatory cells with a predominance of plasma cells and lymphocytes. Here, we show the primo vessel-like structure of the primo-vascular system (PVS) in a dog with IPT. A 6-years old male Mongrel dog was diagnosed with an abnormal mass (diameter 5.5 cm, weight 22 g) near left preputial area. The dog was submitted to the surgical detectomy of the mass. During the surgical operation, we observed primo vessel-like material. After fixations, the masses appeared macroscopically as lipoid-like, firm, white to grey masses, measuring $5{\times}8cm$. Histologically, cellular infiltration into the muscular layers was frequently seen. The mesenchymal proliferation remained the main component of the mass and was composed of myofibroblastic-like spindle cells characterized by globular, irregular nuclei containing open chromatin and a prominent nucleolus. On the basis of the histopathologic lesions, the subcutaneous mass was diagnosed as IPT. Also, we detected a primo vessel-like structures in some areas of the IPT tissues. These were observed as novel thread-like structures and bundle of tubular structures. To our knowledge, this report is the first case of primo vessel-like structure in a dog with IPT.

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hak-Woon;Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.846-852
    • /
    • 2004
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in ${\theta}z$ and $r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

  • PDF

A Study on Noise and Vibration Reduction of an NC Lathe Gear Box (NC 선반 기어박스의 소음.진동 저감에 관한 연구)

  • Choi, Young-Hyu;Park, Seon-Kyun;Bae, Byung-Tae;Jung, Taek-Soo;Kim, Chung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.94-99
    • /
    • 2000
  • When operating NC lathe, gear box which is equipped with gear train and spindle sometimes generates loud noise and excessive vibrations. In order to identify their causes, In this study, torsional and lateral vibration characteristics including critical speeds of the gear train-spindle system are first analyzed by using torsional and lateral vibration models of the gear train and shafts. Natural frequencies and modes of the gear box structure are also analyzed by impulse hammer test. Furthermore, measured vibration and noise signals are analyzed and compared with theoretical analysis results. At last it is concluded that the cause of the excessive mise and vibration is the resonance between gear meshing frequency including its side bands, shaft bending and torsional vibration frequencies, and the natural frequencies of th gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between them through the redesign of the gear module.

  • PDF

Shape Optimization for Lightweight of the Line Center for Processing Complex Shape Parts (복합형상 부품 가공용 라인센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Park, Do-Hyun;Jeong, Ho-In;Kim, Sang-Won;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.86-92
    • /
    • 2021
  • As interest and demand for high value-added industries, including the global automobile and aerospace industries, have increased recently, demand for line centers with excellent performance that can respond to the production system for producing high value-added products is also rapidly increasing. A line center improves productivity based on the installed area using a multi-spindle compared to a conventional machining center. However, as the number of spindles increases, the weight increases and results in structural problems owing to the heat and vibration generated by each spindle. Therefore, it is necessary to improve machining precision through the structural improvement of the line center. This study presents research on the stabilization design of the line center through structural stability analysis through structural analysis to develop a compact multi-axis line center. An optimization model of the line center has been proposed to improve the processing precision and increase the rigidity by performing weight reduction based on the structural analysis results.

Cutting Conditions of Carbide Insert Drill (초경 인서트 드릴의 절삭 조건에 관한 연구)

  • Choi, Sung-Yun;Hwang, Chul-Woong;Lee, Sang-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.

A Study on the Standard Roughness for SUS440C Internal Diameter Machining Using a CNC Automatic Lathe (CNC 자동선반을 이용한 SUS440C 안지름 가공에 대한 표준 거칠기에 관한 연구)

  • Chul-Woong Choi;Sik-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.605-613
    • /
    • 2023
  • The multi-axis combined machining technology has enabled combined machining, which was difficult. However, the reality is that manufacturing costs are rising due to expensive equipment and there is a shortage of machine operation engineers. The purpose of this research is to present the optimum cutting conditions for the surface roughness when processing the inner diameter of SUS440C, which is an egg material, using a CNC automatic lathe. As a result of measuring the surface roughness, dry machining was the best at Ra0.481㎛ at a spindle speed of 4,000rpm, a feed rate of 0.05rev/min, and a cutting depth of 0.3mm. In wet machining, the highest value was Ra0.317 at a spindle speed of 2,000 rpm, a feed rate of 0.05 rev/min, and a cutting depth of 0.2 mm. The lower the feed rate, the better surface roughness appears. It was found that the feed rate had more influence than the number of revolutions and depth of cut.