• 제목/요약/키워드: Spindle bearing system

검색결과 176건 처리시간 0.031초

베어링 Span을 고려한 저널 베어링의 동특성 해석 (Dynamic Characteristics of Journal Bearings Considering Bearing Span)

  • 윤진욱
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.779-784
    • /
    • 2004
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearingsconsidering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성 (Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions)

  • 최대봉;김수태;정성훈;김진한;김용기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal deformation according to the spindle speed, preload and flow rate are measured by thermocouple and gap sensor. Temperature distribution and thermal deformation are analyzed by using the finite element method. The results of analysis are compared with the measured data. This paper show that the suitable preload and hollow shaft cooling are very effective to minimize the thermal effect by the motor and ball bearings. This study indicates that temperature distribution and thermal deformation of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method and supports thermal optimization and more effective cooling method.

  • PDF

자기 베어링 주축시스템의 유도형 센서 개발 (Development of Inductive Sensor in Magnetic Bearing Spindle System)

  • 신우철;이동주;홍준희;노명규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.32-37
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle system. The main god of our research is to develop technology to produce high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is bang developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. In this paper, we report the selection process of the sensor types and the experimental results with driving circuits.

  • PDF

모터분리형 초고속 머시닝센터 주축계의 열특성 해석 (Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC)

  • 김석일;권태균;나상준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

초고속 HMC 주축계의 열특성 해석 (Thermal Characteristics Analysis of a High-Speed HMC Spindle System)

  • 김석일;김기상;김기태;나승표
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.441-446
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석 (Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft)

  • 이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

전자기 가진기를 이용한 스핀들 외란 보상 제어 (Compensation of a Spindle Disturbance using an Electromagnetic Exciter)

  • 안재삼;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.329-329
    • /
    • 2000
  • In this paper, a spindle system using an electromagnetic exciter is proposed to compensate a spindle disturbance such as unbalance and machining force etc A spindle compliance can be readily varied with a disturbance which is generated by the interact ion between the spindle / workpiece structure and the cutting process dynamics. The varied compliance is one of the major constraints that deteriorates the surface quality of workpiece. This paper suggests a compliance compensation by using the EME in the proposed spindle system. To compensate the varied compliance, firstly a spindle system modeling was conducted by using the bond graph. Then the model is simulated by numerical analysis method and an optimal EME position is determined to compensate a disturbance effectively through simulation, which makes the bearing load to be minimized

  • PDF

스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구 (Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System)

  • 박상진;장건희;김철순;한재혁
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구 (Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System)

  • 박상진;장건희;김철순;한재혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF

원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구 (A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor)

  • 박상신;김규하
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.