• Title/Summary/Keyword: Spindle bearing system

Search Result 176, Processing Time 0.035 seconds

Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing (공기동압베어링의 성능 해석 및 가공특성 평가)

  • Baek, Seung-Yub;Kim, Kwang-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5412-5419
    • /
    • 2011
  • The need is growing for high-speed spindle because various equipment are becoming more precise, miniaturization and high speed with the development of industries. Air-lubricated dynamic bearings are widely used in the optical lithographic manufacturing of wafers to realize nearly zero friction for the motion of the stage. Air-lubricated dynamic bearing can be used in high-speed, high-precision spindle system and hard disk drive(HDD) because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy. In the paper, numerical analysis is undertaken to calculate the performance of air-lubricated dynamic bearing with herringbone groove. The static performances of herringbone groove bearings which can be used to support the thrust load are calculated. Electrochemical micro machining($EC{\mu}M$) which is non-contact ultra precision machining method has been developed to fabricate the air-lubricated dynamic bearing and optimum parameters which are inter electrode gap size, concentration of electrolyte, machining time are simulated using numerical analysis program.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexiblity of Supporting Structures and an Actuator in a HDD (지지구조와 액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Chang-Suk;Jang, Gun-Hee;Lee, Ho-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a method to analyze the vibration of a flexible spinning disk-spindle system with FDBs, flexible base structure and an actuator in a HDD by using the FEM. Finite element equations of each component of a HDD spindle system from the spinning flexible disk to the flexible base plate are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by using the restarted Arnoldi iteration method. The validity of the proposed method is verified by comparing the simulated natural frequencies, mode shapes with the experimental results.

  • PDF

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF

Design of Micro-Machining System for Micro/Meso Mechanical Component (Micro/Meso부품 대응형 마이크로 기계가공시스템 기술 연구)

  • Park J.K.;Kyung J.H.;Ro S.K.;Kim B.S.;Park J.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper describes the design of micro machine tools system for mechanical machining of micro/meso scale mechanical parts. The micro machining systems such as $\mu-Late$, $\mu-milling/drilling$ machine and $\mu-grinding$ machine are the basic elements constructing $\mu-factory$ which gains more attention recently because of increasing needs of mico and nano-parts in various industrial and medical area. A miniaturized 3-axis milling machine with VCM stage and air spindle and palm-top size micro-late are designed, and air bearing stage and stepwise linear motion system with PZT are studied for motion system. The micro cutting characteristics are investigated experimentally, and reconfigurable machine structures are also considered.

  • PDF

Basic Characteristics of a Self-Compensated Hydrostatic Journal Bearing (자기 보상형 유정압 저어널 베어링의 기본 특성)

  • Park Chun Hong;Lee Young Joon;Hong Seong Wook;Lee Husang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.159-166
    • /
    • 2005
  • A self-compensated water-hydrostatic bearing is well known to have advantages in stiffness. In this paper, its concept is extended to a hydrostatic journal bearing for achieving higher stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated hydrostatic journal bearing. The analysis results reveal that the self-compensated journal bearing has higher load capacity and higher stiffness than conventional, fixed capillary journal bearings. and that this benefit degrades in the case of high eccentricity. Thus, a spindle system with self-compensated journal bearings must be designed to ensure a sufficiently large load capacity. A rectangular type capillary is also introduced with consideration of the practical application of the self-compensated hydrostatic journal bearing. Theoretical analysis results show that the rectangular type capillary is more beneficial than conventional annular type capillaries in practical use. The experimental verification on the analysis method is made to show that the experimental results are in good agreement with theoretical results.

Development of a High-speed Line Center using Linear Motor Feed System and High-speed Spindle System (리니어 모터 이송계와 고속 주축을 적용한 초고속 라인 센터 개발)

  • 문홍만;백영종;조현택;최대봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.107-112
    • /
    • 2003
  • The recent machine tools are requested so high-quality processing and productivity increasing. Therefore, it is so necessary to develop technology for high-speed and high-precision. This thesis touches on the development of high speed and intellectual line center. At first, the line center is necessary that strong structure, compact structure and light weight design for high-speed processing and transfer. So, it is necessary that examination of new materials and structures for light-weight and control devices for precision processing. So, it is going to make mention of the process of 1st model production for the above-mentioned based on test model production and evaluation.

  • PDF

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

Development of a Multi-Tasking Machine Tool for Machining Large Scale Marine Engine Crankshafts and Its Design Technologies (대형 선박엔진 크랭크샤프트 가공용 복합가공기 기술 개발)

  • An, Ho-Sang;Cho, Yong-Joo;Choi, Young-Hyu;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2012
  • A multi-tasking machine tool for large scale marine engine crankshafts has been developed together with design technologies for its special devices. Since work pieces, that is, crankshafts to be machined are big and heavy; weight of over 100 tons, length of 10 m long, and diameter of over 3.5 m, several special purpose core devices are necessarily developed such as PTD (Pin Turning Device) for machining eccentric pin parts, face place and steady rest for chucking and resting heavy work pieces. PTD is a unique special purpose device of open-and-close ring typed structure equipped with revolving ring spindle for machining eccentric pins apart from journal. In order to achieve high rigidity of the machine tool, structural design optimization using TMSA (Taguch Method based Sequential Algorithm) has been completed with FEM structural analysis, and a hydrostatic bearing system for the PTD has been developed with theoretical hydrostatic analysis.

Dynamic analysis and experiment for shaft systems supported by angular contact ball bearings (각 접촉 볼 베어링으로 지지된 회전 축 계의 동적 해석 및 실험)

  • 강규웅;강중옥;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.247-250
    • /
    • 2000
  • This paper presents the dynamic analysis and experiment for a shaft system supported by angular contact ball bearings. Among others, the dynamic characteristics of bearings are significantly affected by axial preload and radial load applied. This paper rigorously analyzes the dynamic characteristics of a shaft system with angular contact ball bearings subject of axial preload so as to result in eigenvalues as well as bearing stiffness characteristics. Experiments are also performed to identify natural frequencies and stiffness characteristics of bearings implemented. Comparison is made on the theoretical and experimental results.

  • PDF

A Study on the Cooling Characteristics of the Helical Type Cooling-Jacket of the Built-in Motor Spindle according to the Flow Rate (모터 내장형 주축계의 나선형 냉각 자켓의 유량에 따른 냉각 특성)

  • 김태원;김수태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.691-696
    • /
    • 2000
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. Three dimensional model was selected for the analysis of the helical-type cooling jacket. This model includes the estimation on the amount of heat generation from bearing and built-in motor and the thermal characteristic values such as heat flux on the boundary. The temperature distributions are analyzed and the cooling by Nusselt number and total heat transfer coefficient. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket.

  • PDF