• 제목/요약/키워드: Spindle and workpiece vibration

검색결과 21건 처리시간 0.02초

소형 정밀 선반용 주축의 열 변형 해석 (An Analysis of the Thermal Deformation of the Main Spindle for Small and Precision Lathe)

  • 김건;고태조;김희술
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.43-49
    • /
    • 2007
  • Multi-function and miniaturization of the medical equipment and tele-communication systems need small and high precision machined parts. For the economic machining of the small size workpiece it should be machined by small and high precision machine tools with high speed machining. The belt type driving system in turning lathe has a limitation of spindle speeds because of the vibrations from driving mechanism, built-in type of driving mechanism is used to reduce the vibration. However, the main spindle of the built-in motor is connected directly to the motor, so the heat generation of the motor and bearing makes bad influence of the accuracy of machine tools. In this study, the analysis of heat generation from motor and bearings supporting main spindle and experiment were carried out. The results of theoretical simulation of temperature and deformation of the main spindle are good agreement with those of measured.

  • PDF

파워바이스 증력장치 최적설계에 관한 연구 (A Study on the Optimum Design of Power Vice-Strengthening Device)

  • 이경일;정윤수;김재열
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

3점식 정도측정에 관한 연구 (The Study of Precision measurement by the 3-Point Method)

  • 전승윤;이영진;정영일;배종일;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.607-612
    • /
    • 2000
  • Roundness measurement method using three displacement sensors makes in-process roundness measurement possible on the NC machine because it eliminates the vibration signal and eccentricity signal from measured roundness signal from the workpiece. But if measured signals contain noises, high precision measurement of the roundness isn't possible. In this study, a high precision in-process roundness measurement system is developed, which applies a Kalman filter to the roundness measurement method using three displacement sensors and can be used to measure vibration of the spindle.

  • PDF

랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가 (Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test)

  • 최영휴;하경보;안호상
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.

절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구 (A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal)

  • 김정두;이은복
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

칼만필터를 이용한 3점식 정도측정에 관한 연구

  • 이영진;전승윤;정금영;김종화;배종일;이만형
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.72-78
    • /
    • 2001
  • Roundness measurement method using three displacement sensors makes in-process roundness measurement possible on the NC machine because it eliminates the vibration signal and eccentricity signal from measured roundness signal from the workpiece. But there are noises in measured signals, it isn't possible to measure the roundness with high precision. In this study, a high precision in-process roundness measurement system is development, which can eliminate vibrations of the spindle by using three displacement sensors and which can also estimate the noisy roundness measurement signals by applying Kalman filter.

  • PDF

정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구 (A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools)

  • 손덕수;김상화;박일환
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

신경회로망을 이용한 원격모니터링을 위한 가공공정의 공구마모와 표면조도에 관한 연구 (A Study on the Tool Wear and Surface Roughness in Cutting Processes for a Neural-Network-Based Remote Monitoring system)

  • 권정희;장우일;정성현;김도언;홍대선
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.33-39
    • /
    • 2012
  • The tool wear and failure in automatic production system directly influences the quality and productivity of a product, thus it is essential to monitor the tool state in real time. For such purpose, an ART2-based remote monitoring system has been developed to predict the appropriate tool change time in accordance with the tool wear, and this study aims to experimently find the relationship between the tool wear and the monitoring signals in cutting processes. Also, the roughness of workpiece according to the wool wear is examined. Here, the tool wear is indirectly monitored by signals from a vibration senor attached to a machining center. and the wear dimension is measured by a microscope at the start, midways and the end of a cutting process. A series of experiments are carried out with various feedrates and spindle speeds, and the results show that the sensor signal properly represents the degree of wear of a tool being used, and the roughnesses measured has direct relation with the tool wear dimension. Thus, it is concluded that the monitoring signals from the vibration sensor can be used as a useful measure for the tool wear monitoring.

2차원 진동 미세가공을 위한 가진테이블 개발 (Development of Excitation Table for 2-dimensional Vibrational Micro Cutting)

  • 김기대;이강희
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.62-67
    • /
    • 2012
  • To realize 2-dimensional vibrational micro cutting in milling and drilling, etc. where the tools rotate, it could be a promising way to vibrate a workpiece instead of a rotating tool itself. In this study, an excitation work-table was developed using two piezoelectric materials orthogonally arranged. The trochoidal trajectory of a cutting tool which is necessary for 2D vibrational cutting is enabled in the excitation condition of higher excitation frequency and larger amplitude of vibration and the cutting condition of smaller diameter of cutting tool and lower spindle speed. The various trochoidal trajectories of a cutting tool could be generated in the excitation work-table by adjusting the input voltages to two piezoelectric materials and the phase between the two voltages and the trajectories could be readily used for the 2D vibrational micro cutting.

대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구 (A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts)

  • 박철순;배성문
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.