• Title/Summary/Keyword: Spindle Unit

Search Result 70, Processing Time 0.024 seconds

The Development of Ultra-precision Centerless Grinding Machine (초정밀 CNC 센터리스 연삭기 개발)

  • Cho S.J.;EBIHARA EBIHARA;Yoon J.S.;Cho C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.557-558
    • /
    • 2006
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. As the good-qualified ferrule is required a precise and fine grinding, grinding machine for ferrule must have a high accuracy and a sufficient stiffness. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed.

  • PDF

The Optimization of a Hydrostatic Spindle System for Grinding Machines (연삭기용 유정압베어링주축의 최적화에 관한 연구)

  • Lee, C.H.;Park, C.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.140-147
    • /
    • 1996
  • Machining accuracy of machine tools spindles using the hydrostatic bearing, largely depends on the static stiffness and the thermal deformation of the spindle unit. In this paper, the modelling and static, thermal analysis of the hydrostatic spindles were performed for the relationship between the design variables like the bearing span, overhang, bearing stiffness and static stiffness at spindle. The goal of optimization is the mazimum, static stiffness at spindle nose with lower temperature rise in hydrostatic bearing. Temperature rise of hydrostatic bearing is minimized with the variables of spindle diameter and oil supply pressure. Finally, validity of the proposed algorithm is verified by improving the static, thermal performance of the existing hydrostatic spindles.

  • PDF

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

Detection of Potato Spindle Tuber Viroid Using RT-PCR Technique (RT-PCR 기법을 이용한 감자 걀쭉 바이로이드 (Potato Spindle Tuber Viroid)의 검정)

  • Joung, Young-Hee;Jeon, Jae-Heung;Choi, Kyung-Hwa;Kim, Hyun-Soon;Joung, Hyouk
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.205-209
    • /
    • 1997
  • Potato spindle tuber viroid(PSTVd) RNAs were isolated from PSTVd-inoculated potato cv. Superioc and carried out RT-RCR with reverse transcriptase and PSTVd specifie primer pair desigened to amplify the 356 nucleotides of PSTVd genome. As a result, 356 nucleotides PCR products were amplified from PSTVd-inoculated potato cv. Superior. The 356 nucleotides DNA fragment was indeed the PSTVd geneby sequencing analysis. PSTVd could be successfully detected from infected leaf and tuber tissue of potato by using RT-PCR technique. Especially PSTVd was more effectively detected when both downstream and upstream primer were used than only downstream primer was used in RT reaction.

  • PDF

Consideration of Spindle Immersion Depth on Determining the Viscosity of Glass Melts by Rotating Cylinder Method

  • Kim, Young-Jin;Kim, Ki-Dong;Lee, Seung-Beun;Hwang, Song-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.344-347
    • /
    • 2004
  • The influence of spindle immersion depth on the determination of glass melt viscosity was examined in rotating cylinder method. The exact adjustment of spindle immersion depth into soda lime silicate standard glass melts could be peformed by self-constructed electric system. The results showed a slight dependence of viscosity value on the immersion depth change of spindle shaft. The viscosity error per unit length of spindle was 0.4%/mm under the present cylinder dimension.

Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method (유한요소법을 이용한 주축 인터페이스부의 정강성 특성)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

고속 공작기계 주축용 앵귤러 콘택트 볼 베어링의 냉각효과

  • 신영재;이후상;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.303-306
    • /
    • 1997
  • In the case of a cooled air cooling applied to angular contact ball bearings in a high speed spindle unit,the heat generated heat in bearings is removed and the temperature of inner ring is decreased.. Therefore it is possible to increase the speed of spindle units.

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구)

  • Hwang Y.K.;Cho Y.D.;Lee C.M.;Chung W.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1) (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1))

  • Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

Reliability prediction of Centerless grinding machine (무심연삭 시스템의 신뢰성 예측)

  • Choi, H.Z.;Lee, S.W.;Kim, G.H.;ChoI, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1105-1108
    • /
    • 2004
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. The ultra precision centerless grinding machine for ferrule grinding was designed. The centerless grinding machine is composed of the high damping bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. Reliability prediction was very important for the high quality design. In this study, centerless grinding machine was predicted reliability.

  • PDF