• Title/Summary/Keyword: Spindle Monitoring

Search Result 103, Processing Time 0.02 seconds

An Experimental Study on the Runout Characteristics of Spindle State Monitoring Using an Optical Fiber Displacement Sensor (광 파이버 변위 센서를 이용한 주축 모니터링 시 나타나는 런아웃 특성에 대한 실험적 고찰)

  • 신우철;박찬규;정택구;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.472-477
    • /
    • 2003
  • Spindle state monitoring is getting more and more important according to the technology trend of spindle that is accurate and automated. Spindle state monitoring is to measure the state of rotation vibrations. The spindle rotation error motion detected by sensing device includes rotation object's unbalance, external forced vibrations, shape error of spindle, as well as measuring error of monitoring device. In this paper, we have inspected the runout characteristics. Also, we introduce the way to exclude the runout element that appear while you monitor a spindle state.

  • PDF

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

Development of Inductive Sensor in Magnetic Bearing Spindle System (자기 베어링 주축시스템의 유도형 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.32-37
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle system. The main god of our research is to develop technology to produce high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is bang developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. In this paper, we report the selection process of the sensor types and the experimental results with driving circuits.

  • PDF

Tool Wear Monitoring System in CNC End Milling using Hybrid Approach to Cutting Force Regulation (하이브리드 방식의 절삭력 평준화를 통한 CNC 엔드 밀링에서의 공구 마모 모니터링 시스템)

  • Lee, Kang-Jae;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.20-29
    • /
    • 2004
  • A Tool wear monitoring system is indispensable for better machining productivity with guarantee of machining safety by informing the tool changing time in automated and unmanned CNC machining. Different from monitoring using other signals, the monitoring of spindle current has been used without requiring additional sensors on machine tools. For the reliable tool wear monitoring, current signal only of tool wear should be extracted from other parameters to avoid exhaustive analyses on signals in which all parameters are fused. In this paper, influences of force components of parameters on measured spindle current are investigated and a hybrid approach to cutting force regulation is employed for tool wear signal extraction in the spindle current. Finally, wear levels are verified with experimental results by means of real-time feedrate aspects changed to regulate the force component of tool wear.

  • PDF

A Study on Diagnosis and Prognosis for Machining Center Main Spindle Unit (머시닝센터 주축 고장예측에 관한 연구)

  • Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.134-140
    • /
    • 2016
  • Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.

Cutting Vibration Monitoring using a Spindle Displacement Sensor in Turning (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • Kim IlHae;Kim JinHyun;Park Man-Jin;Kim Jong-Hyuk;Yang Hee-Nam;Jang. DongYoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.55-61
    • /
    • 2004
  • Chatter monitoring is also important for realizing an unmanned machining system. while many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantify the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

CUTTING VIBRATION MONITORING USING A SPINDLE DISPLACEMENT SENSOR IN TURNING (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • 김일해;김진현;장동영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.516-522
    • /
    • 2003
  • Monitoring chattering is also important for realizing an unmanned machining system While many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantity the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

  • PDF

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

Monitoring and Control of the Air Spindle Based Microdrilling Using Spindle Speed Variations (주축속도변동을 이용한 공기회전축식 미세구멍가공의 감시제어)

  • 안중환;김화영;이응숙;오정욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1176-1181
    • /
    • 1995
  • Microdrilling is one of the most difficult operations because of the poor chip discharge and the weakness of tool. This study is concerned about the development of a microdrilling monitoring system that is useful for minimizing the tool breakage and enhancing the machinability in the air spindle based microdrilling. The system is composed of a drilling state detection unit and an adaptive step-feed control unit that controls the micro-stepping motor driven spindle axis. Drilling states such as overload, tood breakage are recognized by the change of the air spindle speed which is measured via the reflective photo sensor. Based on the monitoring results, the adaptive step-feed control algorithm adjusts the step increment to keep the decrease of spindle speed within a specified range. The results of evaluation tests have shown that the developed system is very effective to prevent the breakage of microdrill and improves the productivity in comparison with the conventional microdrilling.

Study on Prediction of Drill Breakage using Spindle and Z-axis Motor Currents (주축 및 Z축 모터전류를 이용한 드릴파손 예측에 관한 연구)

  • Kim, Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.101-108
    • /
    • 1999
  • A reliable and practical monitoring of drill breakage is a crucial technique in automatic machining system. In this study, a real-time monitoring system was developed to predict drill breakage using both spindle and z-axis motor current. Drill breakage is monitored by detecting the level of residual motor current which is obtained through the moving average filter algorithm. The residual exhibits a feature of sharp decrease just before drill breakage. Therefore, drill breakage can be predicted by detecting this characteristic of residual component. Z-axis motor current is better to predict the drill breakage than spindle motor current, because the former is faster in response than the latter when drill breakage is occurred. The evaluation experiments have shown that the developed monitoring system works very well.

  • PDF