• 제목/요약/키워드: Spindle Error

검색결과 166건 처리시간 0.034초

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

고속 정밀 가공기의 공구셋업 측정기술 (Tool-Setup Measurement Technology of High Speed Precision Machining Tool)

  • 박경택;신영재;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

고속 텝 가공(tapping)을 위한 자동 이득(gain) 조정기 (Auto fitting of motor gains for high speed tapping)

  • 최진욱;유완식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.660-663
    • /
    • 1996
  • There has been many activity to increase accuracy in machining center by reducing tracking error. The tracking error can cause bad effect in high speed rigid tapping in which syncronization servo motor with spindle is relatively important. To reduce tracking error, feed forward control has been used, but no method is provided knowing motor dynamics, force variation, etc. In this paper, we observe that, despite of tracking error of relevant axis, high speed tapping could be possible by reducing contour error of axis to be syncronized. We present the method to increase accuracy in high speed tapping to minimize contour error by automatically fitting gains of servo and spindle.

  • PDF

개방형 CNC를 갖는 공작기계에 실장한 열변형량 예측 시스템 (Prediction System of Thermal Errors Implemented on Machine Tools with Open Architecture Controller)

  • 김선호;고태조;안중환
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.52-59
    • /
    • 2008
  • The accuracy of the machine tools is degraded because of thermal error of structure due to thermal variation. To improve the accuracy of a machine tools, measurement and prediction of thermal error is very important. The main part of thermal source is spindle due to high speed with friction. The thermal error of spindle is very important because it is over 10% in total thermals errors. In this paper, the suitable thermal error prediction technology for machine tools with open architecture controller is developed and implemented to machine tools. Two thermal error prediction technologies, neural network and multi-linear regression, are investigated in several methods. The multi-linear regression method is more effective for implementation to CNC. The developed thermal error prediction technology is implemented on the internal function of CNC.

3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구 (A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system)

  • 오승혁;이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF

나사연삭기 회전전달 및 테이블 이송오차 평가에 관한 연구 (A Study on the Evalution of Rotational and Linear Movement Error in Thread Grinder)

  • 박철우;윤영식;이상조
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.45-52
    • /
    • 1996
  • It is one of the important causes that the precision of the thread grinder decide the machining errors of the ball screw. The approach described in this study demonstrates how the dominant causes of the inaccuracies in thread grinding system can be determined. To evaluate the machining error of thread grinder, rotary encoder is allocated to spindle shaft and master screw for measuring the rotational transfer error between spindle shaft and master screw and the laser measuring system is used for checking the movement error.

  • PDF

Consideration of Spindle Immersion Depth on Determining the Viscosity of Glass Melts by Rotating Cylinder Method

  • Kim, Young-Jin;Kim, Ki-Dong;Lee, Seung-Beun;Hwang, Song-Hee
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.344-347
    • /
    • 2004
  • The influence of spindle immersion depth on the determination of glass melt viscosity was examined in rotating cylinder method. The exact adjustment of spindle immersion depth into soda lime silicate standard glass melts could be peformed by self-constructed electric system. The results showed a slight dependence of viscosity value on the immersion depth change of spindle shaft. The viscosity error per unit length of spindle was 0.4%/mm under the present cylinder dimension.

주축 전면부 칩 제거를 위한 압축공기 구멍 설계에 관한 연구 (A Study on the Design of Compression Air Hole in Front of Spindle for Chip Removal)

  • 강동위;이춘만
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.278-283
    • /
    • 2013
  • While Built-in Spindle is working in machining center, the tool is changed by ATC(Automatic Tool Changer) automatically. However, impurities could be stacked in front of spindle because of chips formation while machining, and positional error between spindle and tool could be generated. Compressed air holes are necessary for removal of the impurities. But, the diameter and number of compressed air hole are different for each built-in spindle in market. In this paper, flow analysis is carried out to find out the efficient figuration of the compressed air hole by using velocity and pressure distributions.

성형연삭기의 주축부 구조해석과 최적설계에 관한 연구 (A Study on the Structure Analysis and Optimum Design of Surface Grinding Machine Spindle System)

  • 한정빈;황규원;정명진;박동삼
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.83-94
    • /
    • 1986
  • Grinding machine, one of the precision machine tool, requires high accuracy in spindle system. But, recent Inspection and Test reports by KIMM shows high inferio¬rity ratio in home-made grinding machines and points out that this is mainly due to the lack of design ability and assembling technique of spindle system. In this paper, therefore, static stiffness, dynamic characteristics, thermal defor¬mation and error motion of spindle system were studied. With these results, we presented the general data to design and assemble the spindle system. Test of spindle system modified by this study showed that several factors affecting machining accuracy were improved largely.

  • PDF

공작기계 스핀들 부위의 열분포 분석 및 오차 보정 (Analysis of Thermal Distribution and Compensation of Error for Spindle of Machining Center)

  • 고한서;박광희;서형렬;하종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1352-1357
    • /
    • 2004
  • Thermal error compensation has been developed for CNC (Computer Numerical Control) machining center with moving heat sources. The thermal error in CNC machining center has an effect on machining accuracy more than the geometric error does. Thus, temperature distributions of a spindle unit have been analyzed numerically by a Finite Differential Method and experimentally by an infrared (IR) camera in this study. A multiple variable method has been derived to estimate the thermal deformation of the machine origin stably and effectively after measuring deformation and temperature data. The experimental results for a vertical machining center have shown that the thermal errors of the machine origins were reduced more than 30% by the developed method.

  • PDF