• 제목/요약/키워드: Spinal nerve ligation

검색결과 43건 처리시간 0.022초

신경결찰에 의한 신경병증성 통증 쥐에서 NMDA Antagonist 전처치가 이질통 발생에 미치는 영향 (Effects of Pre-treatment with NMDA Antagonist for Tactile Allodynia in Nerve Ligation Induced Neuropathic Pain Rat)

  • 이윤우;윤덕미;이종석;안은경;이영숙;김종래
    • The Korean Journal of Pain
    • /
    • 제9권2호
    • /
    • pp.311-317
    • /
    • 1996
  • Background: Following peripheral nerve injury, rats will show a tactile allodynia and hyperalgesia. But the mechanism of allodynia is still obscure. Previous studies have shown this allodynia was reversed by intrathecal alpha-2 agonists and NMDA antagonists, but not by morphine. In formalin test, either the pretreatment of NMDA antagonist or morphine prevents the hyperalgesia. The present studies, using rats rendered allodynic by ligation of the left L5 and L6 nerves, aimed to investigate the effects of pretreatment of MK-801 and morphine on the development of tactile allodynia. Methods and Material: Male Sprague-Dawley rats (100~150g) were anesthetized with halothane, the left L5 and L6 spinal nerves were ligated tightly by 6-0 black silk. For sham operation muscle dissection was performed but the spinal nerve was not ligated. For pretreatment of drugs, MK-801 (NMDA antagonist; 0.3 mg/kg). CNQX (non-NMDA) antagonist; 0.3 mg/kg), morphine (1 mg/kg) or saline (placebo) was administered subcutaneously 30 minutes before operation. A second dose was administered subcutaneously 24 hours after operation and further doses were given daily for 2 days further. The volume of injection was 5 ml/kg. To assess the mechanical allodynia, paw withdrawal thresholds of ipsilateral limb were determined using 8 von Frey hairs. Results: Within 2 days saline, CNQX or morphine injected rats developed tactile allodynia (paw withdrawal threshold was about 2g), and persisted for over 2 weeks. Pretreatment of MK-801 delayed the development of tactile allodynia for 3 days comparing to that of saline injected rat. Conclusion: NMDA receptor in the central nerve system plays an important role in the development of tactile allodynia induced by peripheral nerve injury. But the mechanism may be different from hyperalgesia developed in formalin test.

  • PDF

Involvement of the spinal γ-aminobutyric acid receptor in the analgesic effects of intrathecally injected hypertonic saline in spinal nerve-ligated rats

  • Myong-Hwan Karm;Hyun-Jung Kwon;Euiyong Shin;Honggyoon Bae;Young Ki Kim;Seong-Soo Choi
    • The Korean Journal of Pain
    • /
    • 제36권4호
    • /
    • pp.441-449
    • /
    • 2023
  • Background: Hypertonic saline is used for treating chronic pain; however, clinical studies that aid in optimizing therapeutic protocols are lacking. We aimed to determine the concentration of intrathecally injected hypertonic saline at which the effect reaches its peak as well as the underlying γ-aminobutyric acid (GABA) receptor-related antinociceptive mechanism. Methods: Spinal nerve ligation (SNL; left L5 and L6) was performed to induce neuropathic pain in rats weighing 250-300 g. Experiment 1: one week after implanting the intrathecal catheter, 60 rats were assigned randomly to intrathecal injection with 0.45%, 0.9%, 2.5%, 5%, 10%, and 20% NaCl, followed by behavioral testing at baseline and after 30 minutes, 2 hours, 1 day, and 1 week to determine the minimal concentration which produced maximal analgesia. Experiment 2: after determining the optimal intrathecal hypertonic saline concentration, 60 rats were randomly divided into four groups: Sham, hypertonic saline without pretreatment, and hypertonic saline after pretreatment with one of two GABA receptor antagonists (GABAA [bicuculline], or GABAB [phaclofen]). Behavioral tests were performed at weeks 1 and 3 following each treatment. Results: Hypertonic saline at concentrations greater than 5% alleviated SNL-induced mechanical allodynia and had a significant therapeutic effect, while showing a partial time- and dose-dependent antinociceptive effect on thermal and cold hyperalgesia. However, pretreatment with GABA receptor antagonists inhibited the antinociceptive effect of 5% NaCl. Conclusions: This study indicates that the optimal concentration of hypertonic saline for controlling mechanical allodynia in neuropathic pain is 5%, and that its analgesic effect is related to GABAA and GABAB receptors.

산화질소 합성효소 억제제가 일측성 말초신경 손상에 의해 유발된 신경병증성 통증 쥐의 뒷다리근에 미치는 영향 (Effects of Nitric Oxide Synthase Inhibitor on Hindlimb Muscles in Rats with Neuropathic Pain Induced by Unilateral Peripheral Nerve Injury)

  • 최명애;안경주
    • 대한간호학회지
    • /
    • 제41권4호
    • /
    • pp.520-527
    • /
    • 2011
  • Purpose: The purpose of this study was to examine effects of nitric oxide synthase (NOS) inhibitor on muscle weight and myofibrillar protein content of affected and unaffected hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury. Methods: Neuropathic pain was induced by ligation and cutting of the left L5 spinal nerve. Adult male Sprague-Dawley rats were randomly assigned to one of two groups: The NOSI group (n=19) had NOS inhibitor (L-NAME) injections daily for 14 days, and the Vehicle group (n=20) had vehicle injections daily for 14 days. Withdrawal threshold, body weight, food intake and activity were measured every day. At 15 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles were dissected from hindlimbs. Muscle weight and myofibrillar protein content of the dissected muscles were determined. Results: The NOSI group showed significant increases as compared to the Vehicle group for body weight at 15 days, muscle weight and myofibrillar protein content of the unaffected soleus and gastrocnemius. The NOSI group demonstrated a higher pain threshold than the vehicle group. Conclusion: NOSI for 14 days attenuates unaffected soleus and gastrocnemius muscle atrophy in neuropathic pain model.

흰쥐 신경병증성 통증 모델에서 전침이 케모카인이 유도하는 척수 교세포 활성화 조절에 미치는 영향 (Effects of Electroacupuncture on the Regulation of Chemokine Induced Spinal Activation of Microglia in the Rat Model of Neuropathic Pain)

  • 비슈누몰라칼라 신드후리;이지은;박혜지;김소희;구성태
    • Korean Journal of Acupuncture
    • /
    • 제36권4호
    • /
    • pp.264-273
    • /
    • 2019
  • Objectives : Microglia play a crucial role in electroacupuncture (EA) analgesia on neuropathic pain. The role of chemokines in producing analgesic effects of EA, however, is largely unknown. In the present study, we investigated the role of chemokines in producing analgesic effects of EA in the neuropathic pain model. Methods : Sprague-Dawley rats were randomly assigned into three groups (anesthetized group (ANE), non-acupoint EA group (NAP), and ST36 - GB34 EA group (ACU)). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw was tested. Western blot tests and immunofluorescence assay for C-C motif chemokine ligand 2 (CCL2) levels and microglia activation were performed on spinal cord L5/6. EA was treated once daily from the 3rd day after surgery for 5 days. Results : EA treatments applied to ST36 and GB34 significantly reduced both mechanical and thermal hypersensitivity after two and three times of treatment, respectively. While CCL2 expression significantly increased in neuropathic rats, it was significantly reduced in the ACU. In addition, co-localization of CCL2 and activated microglia significantly decreased in the ACU compared to those of ANE and NAP in the spinal cord L5/L6 dorsal horn. Conclusions : The present results suggest that EA applied to ST36 and GB34 modulates the reduction of CCL2 release from the injured neurons and consequently decreases microglia activation in the spinal cord. Regulation of chemokine induced spinal activation of microglia plays a key role in analgesic effects of EA in the rat model of neuropathic pain.

신경병증 통증 모델의 백서에서 R-PIA의 기계적 항이질통 효과와 ATP-감수성 칼륨 통로와의 연관성에 대한 연구 (The Effect of ATP-sensitive Potassium Channel on R-PIA Induced Mechanical Antiallodynia in a Peripheral Neuropathic Rat)

  • 민홍기;성승혜;정성문;신진우;곽미정;임정길;이청
    • The Korean Journal of Pain
    • /
    • 제18권2호
    • /
    • pp.107-112
    • /
    • 2005
  • Background: Nerve ligation injury may produce mechanical allodynia, but this can be reversed after an intrathecal administration of adenosine analogues. In many animal and human studies, ATP-sensitive potassium channel blockers have been known to reverse the antinociceptive effect of various drugs. This study was performed to evaluate the mechanical antiallodynic effects of spinal R-PIA (Adenosine A1 receptor agonist) and the reversal of these effects due to pretreatment with glibenclamide (ATP-sensitive potassium channel blocker). Thus, the relationship between the antiallodynic effects of R-PIA and ATP-sensitive potassium channel were investigated in a neuropathic model. Methods: Male Sprague Dawley rats were prepared by tightly ligating the left lumbar 5th and 6th spinal nerves and implantation of a chronic lumbar intrathecal catheter for drug administration. The mechanical allodynia was measured by applying von Frey filaments ipsilateral to the lesioned hind paw. And the thresholds for paw withdrawal assessed. In study 1, either R-PIA (0.5, 1 and $2{\mu}g$) or saline were administered intrathecally for the examination of the antiallodynic effect of R-PIA. In study 2, glibenclamide (2, 5, 10 and 20 nM) was administered intrathecally 5 min prior to an R-PIA injection for investigation of the reversal of the antiallodynic effects of R-PIA. Results: The antiallodynic effect of R-PIA was produced in a dose dependent manner. In study 1, the paw withdrawal threshold was significantly increased with $2{\mu}g$ R-PIA (P < 0.05). In study 2, the paw withdrawal threshold with $2{\mu}g$ R-PIA was significantly decreased almost dose dependently by intrathecal pretreatment of 5, 10 and 20 nM glibenclamide (P < 0.05). Conclusions: These results demonstrated that an intrathecal injection of ATP-sensitive potassium channel blockers prior to an intrathecal injection of adenosine A1 receptors agonist had an antagonistic effect on R-PIA induced antiallodynia. The results suggest that the mechanism of mechanical antiallodynia, as induced by an intrathecal injection of R-PIA, may involve the ATP-sensitive potassium channel at both the spinal and supraspinal level in a rat nerve ligation injury model.

Pharmacological interactions between intrathecal pregabalin plus tianeptine or clopidogrel in a rat model of neuropathic pain

  • Lee, Hyung Gon;Kim, Yeo Ok;Choi, Jeong Il;Han, Xue Hao;Shin, Yang Un;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • 제35권1호
    • /
    • pp.59-65
    • /
    • 2022
  • Background: There is still unmet need in treating neuropathic pain and increasing awareness regarding the use of drug combinations to increase the effectiveness of treatment and reduce adverse effects in patients with neuropathic pain. Methods: This study was performed to determine the individual and combined effects of pregabalin, tianeptine, and clopidogrel in a rat model of neuropathic pain. The model was created by ligation of the L5-L6 spinal nerve in male Sprague-Dawley rats; mechanical allodynia was confirmed using von Frey filaments. Drugs were administered to the intrathecal space and mechanical allodynia was assessed; drug interactions were estimated by isobolographic or fixed-dose analyses. Results: Intrathecal pregabalin and tianeptine increased the mechanical withdrawal threshold in a dose-dependent manner, but intrathecal clopidogrel had little effect on the mechanical withdrawal threshold. An additive effect was noted between pregabalin and tianeptine, but not between pregabalin and clopidogrel. Conclusions: These findings suggest that intrathecal coadministration of pregabalin and tianeptine effectively attenuated mechanical allodynia in the rat model of neuropathic pain. Thus, pregabalin plus tianeptine may be a valid option to enhance the efficacy of neuropathic pain treatment.

신경병증성통증 모델쥐에서 뇌간핵 부위에 미세 주입한 Bicuculline에 의한 척수후각세포의 반응도 억제 (Suppression by Microinjection of Bicuculline into Brain Stem Nuclei of Dorsal Horn Neuron Responsiveness in Neuropathic Rats)

  • 임중우;최윤;이재환;남택상;백광세
    • The Korean Journal of Pain
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 1998
  • Background: The present study was conducted to investigate effects of microinjection of bicuculline, GABA-A receptor antagonist, into the brain stem nuclei on the dorsal horn neuron responsiveness in rats with an experimental peripheral neuropathy. Methods: An experimental neuropathy was induced by a unilateral ligation of L5~L6 spinal nerves of rats. After 2~3 weeks after the surgery, single-unit recording was made from wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Results: Responses of WDR neurons to both noxious and innocuous mechanical stimuli applied to the somatic receptive fields were enhanced on the nerve injured side. These enhanced responsiveness of WDR neurons were suppressed by microinjection of bicuculline into periaqueductal gray(PAG) or nucleus reticularis gigantocellularis(Gi). A similar suppression was also observed when morphine was microinjected into PAG or Gi. Suppressive action by Gi-bicuculline was reversed by naloxonazine, ${\mu}$-opioid receptor antagonist, microinjected into PAG whereas PAG-bicuculline induced suppression was not affected by naloxonazine injection into Gi. Gi-bicuculline induced suppression were reversed by a transection of dorsolateral funiculus(DLF) of the spinal cord. Conclusions: The results suggest that endogenous opioids, via acting on GABAergic interneurons in PAG and Gi, may be involved in the control of neuropathic pain by activating the descending inhibitory pathways that project to the spinal dorsal horn through DLF to inhibit the responsiveness of WDR neurons.

  • PDF

말초신경 손상에 의한 신경병증성 통증으로 유발된 쥐 뒷다리근 위축 (Hindlimb Muscle Atrophy of Rat Induced by Neuropathic Pain)

  • 최명애;김경화;안경주;이경숙;최정안
    • Journal of Korean Biological Nursing Science
    • /
    • 제10권1호
    • /
    • pp.88-95
    • /
    • 2008
  • Purpose: The purpose of this study was to examine the effect of neuropathic pain by peripheral nerve injury on mass and Type I and II fiber cross-sectional areas on hindlimb muscles of the neuropathic pain model rat. Method: Adult male Sprague-Dawley rats (body weight 200-220 g) were assigned to one of two groups: a neuropathic pain group (n=7) that had a ligation of the left L5 spinal nerve, a control group (n=5), a naive rat without any procedures. Withdrawal threshold, activity, body weight and food intake were measured daily. At 8 days after neuropathic pain, all rats were anesthetized and the soleus and plantaris muscles were dissected from the both hindlimbs. Body weight, food intake, muscle weight and Type I and II fiber cross-sectional area of the dissected muscles were determined. Result: The neuropathic pain group showed a significant decreases (p<.05) as compared with the control rats, in diet intake, body weight, muscle weight and Type II fiber cross-sectional area of the left (affected side) soleus and plantaris muscles, and the right (unaffected side) muscle weight of plantaris and Type II fiber cross-sectional area of the soleus muscle. Conclusion: The hindlimb muscle atrophy occurs in both affected and unaffected side due to neuropathic pain by the peripheral nerve injury. The hindlimb muscle atrophy of the affected side is more pronounced than that of the unaffected side.

  • PDF

건측(健測) 취혈(取穴) 다종(多種) 침자법(鍼刺法)이 백서(白鼠)의 신경병리성(神經病理性) 동통(疼痛)에 미치는 영향 (Effects of Acupuncture, Electro-acupuncture, Low Level He-Ne Laser Therapy at Oe-gwan($TE_5$) ${\cdot}$ Chogimup ($GB_{41}$) on L5 Spinal Nerve Ligation Model in Rats)

  • 정정희;조명래;위통순;류충열
    • Journal of Acupuncture Research
    • /
    • 제24권5호
    • /
    • pp.137-150
    • /
    • 2007
  • Objectives : To find effects of acupuncture, electro-acupuncture, low level He-Ne laser therapy(LLLT) at $TE_5$, $GB_{41}$ in the neuropathic pain. We made experiment on rats ligated L5 spinal nerve like general herniation of nucleus pulposus(HNP). Methods : A model of neuropathic pain was made by isolating Left 5th lumbar spinal nerve of rats. Three days after the neuropathic surgery, acupuncture and LLLT, electro-acupuncture was injected at $TE_5$, $GB_{41}$ one time a day for a week. Each group was divided two. one is opposite side performed the surgery which is right, another is left side performed the surgery. After that, the author examined the withdrawal response of neuropathic rats' legs by van Frey filament and acetone stimulation. And also the author examined c-Fos, Nociceptin and KOR-3 in the midbrain central gray of neuropathic rats. Results : As we have observed the effect of mechanical allodynia, LT-R group were diminished on 6th day compared with control group, EA-L group, EA-R group and LT-L group were diminished on 7th day compared with control group. As we have observed the effect of cold allodynia, EA-R group were diminished on 6th day, 7th day compared with control group. As we have observed the effect of activity of c-Fos in the central gray part, EA-R group and LT-R group were diminished compared with control group. As we have observed the effect of activity of Nociceptin in the central gray part, EA-R group were a little increased compared with control group but it is not reliability. As we have observed the effect of activity of KOR-3 in the central gray part, EA-R group were significantly increased compared with control group. Conclusions : We have noticed that effect of acupuncture at opposite side of sickness and powerful stimulation could be more effective, because of EA-R group have more controllable effect all test we have done on the other hand EA-L group have only effect on mechanical allodynia. This study can be used in clinical therapy for neuropathic pain. But it is not reliability that Nociceptin have effectively to control pain. Therefore We have to follow up about that.

  • PDF

DHEA 투여가 일측성 말초신경 손상에 의해 유발된 신경병증성 통증 쥐의 환측과 정상측 뒷다리근에 미치는 영향 (Effect of Dehydroepiandrosterone on Affected and Unaffected Hindlimb Muscles in Rats with Neuropathic Pain Induced by Unilateral Peripheral Nerve Injury)

  • 최명애;안경주
    • 대한간호학회지
    • /
    • 제39권5호
    • /
    • pp.632-640
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effect of DHEA (Dehydroepiandrosterone) on muscle weight and Type I and II fiber cross-sectional area of affected and unaffected hindlimb muscles in rats with neuropathic pain induced by unilateral peripheral nerve injury. Methods: Neuropathic pain was induced by ligation and cutting of the left L5 spinal nerve. Adult male Sprague-Dawley rats were randomly assigned to one of two groups: The DHEA group (n=10) had DHEA injections daily for 14 days, and the Vehicle group (n=10) had vehicle injections daily for 14 days. Withdrawal threshold, body weight, food intake and activity were measured every day. At 15 days all rats were anesthetized and soleus, plantaris and gastrocnemius muscles were dissected from the both hindlimbs. Body weight, food intake, activity, muscle weight and Type I, II fiber cross-sectional area of the dissected muscles were measured. Results: The DHEA group showed significant increases (p<.05), as compared to the vehicle group for muscle weight of the unaffected plantaris, and in Type II fiber cross-sectional area of the gastrocnemius muscle. The DHEA group demonstrated a higher pain threshold than the vehicle group whereas total diet intake and activity score were not significantly different between the two groups. Conclusion: DHEA administration for 14 days attenuates unaffected plantaris and gastrocnemius muscle atrophy.