• Title/Summary/Keyword: Spinal mouse

Search Result 74, Processing Time 0.028 seconds

Effects of Gamibojungikki-tang on Total Protein Synthesis of Cultured Spinal Sensory Neurons Damaged by GLUCOSE OXIDASE (가미보중익기탕이 GLUCOSE OXIDASE에 의해 손상된 배양 척수감각신경세포의 총단백질 합성량에 미치는 영향)

  • Ho Lee Chang;Beam Kwon Kang;Ho Jang Seung;Sun Song Yong;Gon Ryu Do
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.141-145
    • /
    • 2002
  • In order to clarify the neuroprotective effect of Gamibojungikki-tang (GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), MTT [3-(4,5-dimethylthiazole-2-yl) -2,5-diphenyltetrazolium bromide] assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. MTT50 values were 45 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed decreasing of total protein synthesis. GO was toxic on cultured spinal sensory neurons. Pretreatment at GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as decreasing of total protein synthesis. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Gamibojungikki-tang on LDH activity of Cultured Spinal Sensory Neurons (가미보중익기탕이 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Lee Chang Ha;Kwan Kang Beam;Park Jun Su;Song Yang Sun;Ryu Do Gen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.343-347
    • /
    • 2002
  • In order to darify the neuroprotective effect of Gamibojungikki-tang(GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), NR (Neutral Red) assay and LDH (Lactate Dehydrogenase) activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. NR/sub 50/ values were 50 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed increasing of LDH activity. We knew that GO was toxic on cultured spinal sensory neurons. Pretreatment of GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as increasing of LDH activity. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Jingansikpung-tang Water Extract on LDH Activity of Cultured Spinal Sensory Neurons Damaged by GO (진간식풍탕 전탕액이 GO에 의해 손상된 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Park Kwang Su;Kwon Kang Beam;Seong Eun Kyung;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.563-566
    • /
    • 2002
  • To evaluate the effect of Jingansikpung-tang(JST) water extract on cultured mouse spinal sensory neuron which was inhibited by glucose oxidase(GO)-induced cytotoxicity, MTT and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were pre-incubated with various concentrations of JST extract for 3 hours prior to exposure of GO. The results obtained were as follows: GO, a oxygen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cells on MTT assay. JST water extract have efficacy of decreasing LDH activity increasing by GO in cultured mouse spinal sensory neuron. From above the results, it is concluded that JST water extract has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process.

Protective Effects of Cornu Saigae Tataricae Extracts on Cultured Spinal Motor Neurons Damaged by Oxygen Free Radical (산소자유기에 의한 척수운동세포 독성에 대한 영양각 추출물의 방어효과)

  • Kang Gil Seong;Kwon Kang Beom;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 2003
  • In order to clarify the neuroprotective effect of Cornu Saigae Tataricae(CST) water extract on cultured mouse spinal motor neuron damaged by hydrogen peroxide (H₂O₂), MTT [3-(4,5-dimethylthiazole-2-yl)- 2,5-diphenyltetrazolium bromide] assay, LDH (Lactate Dehydrogenase) activity assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal motor neuron were preincubated with various concentrations of CST water extract for 3 hours prior to exposure of hydrogen peroxide Cell viability of cultured mouse spinal motor neurons exposed to various concentrations of hydrogen peroxide for 6 hours was decreased in a dose-dependent manner. MTT50 values were 40 uM hydrogen peroxide. Cultured mouse spinal motor neurons in the medium containing various concentration of hydrogen peroxide for 6 hours showed increasing of LDH activity and decreasing of total protein synthesis. We know that hydrogen peroxide was toxic on cultured spinal motor neurons. Pretreatment of CST water extract for 3 hours following hydrogen peroxide prevented the hydrogen peroxide-induced neurotoxicity such as increasing of LDH activity and decreasing of total protein synthesis. These results suggest that hydrogen peroxide shows toxic effect on cultured spinal motor neurons and CST water extract is highly effective in protecting the neurotoxicity induced by hydrogen peroxide.

Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons (소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향)

  • 양경석;신선호
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF

Effect of Benincasae Semen on Glucose Oxidase in Cultured Mouse Spinal Motor Neurons (척수운동신경세포에 있어서 Glucose Oxidase의 독성에 대한 동과의 영향)

  • Choi Yu Sun;Yang Hyun Woong;Lee Joung Hwa;Lee Kang Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.457-460
    • /
    • 2003
  • It has been suggested that oxidative stress of reactive oxygen species(ROS) may play an important role in the pathogenesis of neurological disorder. The aim of this study was to elucidate the oxidative stress of glucose oxidase(GO) in the cultured mouse spinal motor neurons and the preventing effect of Benincasae Semen(BS) on ROS-induced neurotoxicity. Cytotoxic effect of GO and protective effect of BS were performed by MTT assay. 30mU/ml GO decreased cell viability in dose-and time-dependent mannner, and BS diminished GO-induced neurotoxicity in these cultures. From above the results, ROS such as GO has toxic effect, and herb extract of BS is very effective against GO-induced neurotoxicity in cultured spinal motor neurons of neonatal mouse.

Effects of Scorpio water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine (전갈 전탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 효과)

  • Yang Heung Su;Kwon Kang Beom;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.553-556
    • /
    • 2002
  • To study the effects of Scorpio on oxygen free radical-mediated damage by xanthine oxidase/hypoxanthine (XO/HX) on cultured spinal sensory neurons, in vitro assays such as MTT assay were used in cultured spinal sensory neurons derived from mice. Spinal sensory neurons were cultured in media containing various concentrations of XO/HX for 6 hours, after which the neurotoxic effect of XO/HX was measured by in vitro assay. The protective effect of the herb extract, Scorpio water extract against XO/HX-induced neurotoxicity was also examined. The results are as follows : In MTT assay, XO/HX significantly decreased the cell viability of cultured mouse spinal sensory neurons according to exposure concentration and time in these cultures. The effect of Scorpio water extract on XO/HX-induced neurotoxicity showed a quantitative increase in neurdfilament. These results suggest that XO/HX has a neurotoxic effect on cultured spinal sensory neurons from mice and that the herb extract, Scorpio water extract, was very effective in protecting XO/HX-induced neurotoxicity.

Effects of Herbar Chelidonii on the Cultured Spinal Sensory Neurons Damaged by XO/HX (백굴채(白屈菜)가 손상된 배양척수감각신경세포에 미치는 영향)

  • Shin, Byung-Cheul;Song, Yung-Sun
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.2 no.1
    • /
    • pp.143-157
    • /
    • 2001
  • Objectives and Methods : To evaluate the mechanism of oxidative damage by xanthine oxydase(XO) and hypoxanthine(HX)-induced oxygen radicals, MTT assay and NR assay were carried out after the cultured mouse spinal sensory neurons were preincubated for 4 hours with various concentrations of XO/HX. And the amount of total protein. neurofilament EIA. lipid peroxidation and LDH activity were measured, to evaluate the protective effect of Herbar Chelidonii(HC) water extract on cultured spinal sensory neurons damaged by XO/HX. after the cultured mouse spinal sensory neurons were preincubated with various concentrations of HC water extract for 3 hours prior to exposure of XO/HX. Results : XO/HX decreased significantly the survival rate of the cultured mouse sensory neurons by NR assay and MTT assay In proportion to concentration and exposed time. In proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA. the decrease of total protein amount by SRB assay and the Increase of lipid peroxidation as well as LDH. HC showed the quantitative increase of neurofilament and total protein, but showed the decrease of lipid peroxidation and LDH activity against the neurotoxicity of XO/HX. Conclusions : From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and that the herbs extract, such as HC, prevent the toxicity of XO/HX effectively in that they decrease lipid peroxidation and LDH activity.

  • PDF

Reliability and validity of rasterstereography measurement for spinal alignment in healthy subjects

  • Yi, Yoon-Sil;Yoo, Seul-Ki;Lee, Da-Gam;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Objective: The Back Mapper is one type of Rasterstereography and it can be used in the clinic without radiation exposure. The purpose of our study was to prove the reliability and validity of the Back Mapper and to compare it with the Spinal Mouse, which is an assessment tool for spinal curvatures using a wheeled mouse, and the Cobb angle by X-ray. Design: Cross-sectional study. Methods: Twenty healthy adults participated in the test to investigate for the inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with assessment devices for scoliosis such as the Back Mapper, Spinal Mouse and Cobb's angle. Data was analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement for reliability and correlation analysis for validity. Results: Intra-rater reliability of the Back Mapper was good (Cronbach's ${\alpha}$=0.821-0.984, ICC=0.696-0.969) except for assessing the lordotic angle. Inter-rater reliability was good (Cronbach's ${\alpha}$=0.870-0.958, ICC=0.770-0.919) in assessment for trunk imbalance, rotation of scapulae, thoracic angle, lumbar angle, and kyphotic angle. The kyphotic angle in the Spinal Mouse had a significant correlation icompared with the Back Mapper (r=0.510, p<0.05), and the Cobb's angle from an X-ray had a significant correlation with trunk inclination (r=0.532, p<0.05). Conclusions: These findings provide good intra-reliability of the Back Mapper in healthy subjects, but the Back Mapper requires more experienced practice to have good inter-reliability. Also, the variables of the Back Mapper does not seem as appropriate compared with the Cobb angle by X-ray.

Effects of Baepungtang water extract on Cultured Spinal Sensory neurons Damaged by Xanthine Oxidase/Hypoxanthine (배풍탕(排風湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 효과(效果))

  • Yu Jin-Deok;Yun Yong-Gap
    • Herbal Formula Science
    • /
    • v.8 no.1
    • /
    • pp.319-328
    • /
    • 2000
  • To evaluate the effect of Baepungtang(BPT) water extract on cultured mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MTT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of BPT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cell on NR assay and MTT assay. 2. $MTT_{50}$ value and $NR_{50}$ value of XO/HX were 30 mU/ml XO/O.2 mM HX. 3. BPT water extract have efficacy of increasing neurofilament. 4. BPT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that BPT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF