• Title/Summary/Keyword: Spinal fusion surgery

Search Result 194, Processing Time 0.029 seconds

Development of An Image-Guided Robotic Surgery System for Spinal Fusion (영상 지원 척추 융합 수술 로봇 시스템의 개발)

  • Chung Goo-Bong;Lee Soo-Gang;Kim Sung-Min;Oh Se-Min;Yi Byung-Ju;Kim Young-Soo;Park Jong-Il;Oh Seong-Hoon;Kim Whee-Kuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.144-148
    • /
    • 2005
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods fer spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images and intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Several experiments employing the developed robotic surgery system are conducted. The experimental results confirmed that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to his/her respiration.

  • PDF

The Change of Biomechanical Milieu after Removal of mstnnnentation in lrunbar Arthrodesis Stiffness of fusion Mass: Finite Element Analysis (척추 유합술 후, 인접 분절의 스트레스에 대한 척추경 나사못에 대한 영향)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.664-667
    • /
    • 2008
  • Since the advent of pedicle screw fixation system, posterior spinal fusion has markedly increased This intemal fixation system has been reported to enhance the fusion rates, thereby becoming very popular procedure in posterior spinal arthrodesis. Although some previous studies have shown the complications of spinal instruments removal, i.e. loss of correction and spinal collapse in scoliosis or long spine fusion patients, there has been no study describing the benefit or complications in lumbar spinal fusion surgery of one or two level. In order to clarify the effect of removal of instruments on mechanical motion profile, we simulated a finite element model of instrumented posterolateral fused lumbar spine model, and investigated the change of mechanical motion profiles after the removal of instrumentation.

  • PDF

Effect of Dietary Calcium on Spinal Bone Fusion in an Ovariectomized Rat Model

  • Cho, Jae-Hoon;Cho, Dae-Chul;Yu, Song-Hee;Jeon, Young-Hoon;Sung, Joo-Kyung;Kim, Kyoung-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • Objective : To evaluate the effect of calcium supplementation on spinal bone fusion in ovariectomized (OVX) rats. Methods : Sixteen female Sprague Dawley rats underwent bilateral ovariectomy at 12 weeks of age to induce osteoporosis and were randomly assigned to two groups : control group (n=8) and calcium-supplemented group (OVX-Ca, n=8). Autologous spinal bone fusion surgery was performed on both groups 8 weeks later. After fusion surgery, the OVX-Ca group was supplemented with calcium in drinking water for 8 weeks. Blood was obtained 4 and 8 weeks after fusion surgery. Eight weeks after fusion surgery, the rats were euthanized and the L4-5 spine removed. Bone fusion status and fusion volume were evaluated by manual palpation and three-dimensional computed tomography. Results : The mean fusion volume in the L4-5 spine was significantly greater in the OVX-Ca group ($71.80{\pm}8.06mm^3$) than in controls ($35.34{\pm}8.24mm^3$) (p<0.01). The level of osteocalcin, a bone formation marker, was higher in OVX-Ca rats than in controls 4 weeks ($610.08{\pm}10.41$ vs. $551.61{\pm}12.34$ ng/mL) and 8 weeks ($552.05{\pm}19.67$ vs. $502.98{\pm}22.76$ ng/mL) after fusion surgery (p<0.05). The level of C-terminal telopeptide fragment of type I collagen, a bone resorption marker, was significantly lower in OVX-Ca rats than in controls 4 weeks ($77.07{\pm}12.57$ vs. $101.75{\pm}7.20$ ng/mL) and 8 weeks ($69.58{\pm}2.45$ vs. $77.15{\pm}4.10$ ng/mL) after fusion surgery (p<0.05). A mechanical strength test showed that the L4-5 vertebrae in the OVX-Ca group withstood a 50% higher maximal load compared with the controls (p<0.01). Conclusion : Dietary calcium given to OVX rats after lumbar fusion surgery improved fusion volume and mechanical strength in an ovariectomized rat model.

Posterior Thoracic Cage Interbody Fusion Offers Solid Bone Fusion with Sagittal Alignment Preservation for Decompression and Fusion Surgery in Lower Thoracic and Thoracolumbar Spine

  • Shin, Hong Kyung;Kim, Moinay;Oh, Sun Kyu;Choi, Il;Seo, Dong Kwang;Park, Jin Hoon;Roh, Sung Woo;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.922-932
    • /
    • 2021
  • Objective : It is challenging to make solid fusion by posterior screw fixation and laminectomy with posterolateral fusion (PLF) in thoracic and thoracolumbar (TL) diseases. In this study, we report our experience and follow-up results with a new surgical technique entitled posterior thoracic cage interbody fusion (PTCIF) for thoracic and TL spine in comparison with conventional PLF. Methods : After institutional review board approval, a total of 57 patients who underwent PTCIF (n=30) and conventional PLF (n=27) for decompression and fusion in thoracic and TL spine between 2004 and 2019 were analyzed. Clinical outcomes and radiological parameters, including bone fusion, regional Cobb angle, and proximal junctional Cobb angle, were evaluated. Results : In PTCIF and conventional PLF, the mean age was 61.2 and 58.2 years (p=0.46), and the numbers of levels fused were 2.8 and 3.1 (p=0.46), respectively. Every patient showed functional improvement except one case of PTCIF. Postoperative hematoma as a perioperative complication occurred in one and three cases, respectively. The mean difference in the regional Cobb angle immediately after surgery compared with that of the last follow-up was 1.4° in PTCIF and 7.6° in conventional PLF (p=0.003), respectively. The mean durations of postoperative follow-up were 35.6 months in PTCIF and 37.3 months in conventional PLF (p=0.86). Conclusion : PTCIF is an effective fusion method in decompression and fixation surgery with good clinical outcomes for various spinal diseases in the thoracic and TL spine. It provides more stable bone fusion than conventional PLF by anterior column support.

Abducens Nerve Palsy after Lumbar Spinal Fusion Surgery with Inadvertent Dural Tearing

  • Cho, Dae-Chul;Jung, Eul-Soo;Chi, Yong-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.581-583
    • /
    • 2009
  • Abducens nerve palsy associated with spinal surgery is extremely rare. We report an extremely rare case of abducens nerve palsy after lumbar spinal fusion surgery with inadvertent dural tearing, which resolved spontaneously and completely. A 61-year-old previous healthy man presented with chronic lower back pain of 6 weeks duration and 2 weeks history of bilateral leg pain. He was diagnosed as having isthmic spondylolisthesis at L4-5 and L5-S1, and posterior lumbar interbody fusion was conducted on L4-5 and L5-S1. During the operation, inadvertent dural tearing occurred, which was repaired with a watertight dural closure. The patient recovered uneventfully from general anesthesia and his visual analogue pain scores decreased from 9 pre-op to 3 immediately after his operation. However, on day 2 he developed headache and nausea, which were severe when he was upright, but alleviated when supine. This led us to consider the possibility of cerebrospinal fluid leakage, and thus, he was restricted to bed. After an interval of bed rest, the severe headache disappeared, but four days after surgery he experienced diplopia during right gaze, which was caused by right-side palsy of the abducens nerve. Under conservative treatment, the diplopia gradually disappeared and was completely resolved at 5 weeks post-op.

Clinical Analysis of Video-assisted Thoracoscopic Spinal Surgery in the Thoracic or Thoracolumbar Spinal Pathologies

  • Kim, Sung-Jin;Sohn, Moon-Jun;Ryoo, Ji-Yoon;Kim, Yeon-Soo;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Objective : Thoracoscopic spinal surgery provides minimally invasive approaches for effective vertebral decompression and reconstruction of the thoracic and thoracolumbar spine, while surgery related morbidity can be significantly lowered. This study analyzes clinical results of thoracoscopic spinal surgery performed at our institute. Methods : Twenty consecutive patients underwent video-assisted thoracosopic surgery (VATS) to treat various thoracic and thoracolumbar pathologies from April 2000 to July 2006. The lesions consisted of spinal trauma (13 cases), thoracic disc herniation (4 cases), tuberculous spondylitis (1 case), post-operative thoracolumbar kyphosis (1 case) and thoracic tumor (1 case). The level of operation included upper thoracic lesions (3 cases), midthoracic lesions (6 cases) and thoracolumbar lesions (11 cases). We classified the procedure into three groups: stand-alone thoracoscopic discectomy (3 cases), thoracoscopic fusion (11 cases) and video assisted mini-thoracotomy (6 cases). Results : Analysis on the Frankel performance scale in spinal trauma patients (13 cases), showed a total of 7 patients who had neurological impairment preoperatively : Grade D (2 cases), Grade C (2 cases), Grade B (1 case), and Grade A (2 cases). Four patients were neurologically improved postoperatively, two patients were improved from C to E, one improved from grade D to E and one improved from grade B to grade D. The preoperative Cobb's and kyphotic angle were measured in spinal trauma patients and were $18.9{\pm}4.4^{\circ}$ and $18.8{\pm}4.6^{\circ}$, respectively. Postoperatively, the angles showed statistically significant improvement, $15.1{\pm}3.7^{\circ}$ and $11.3{\pm}2.4^{\circ}$, respectively(P<0.001). Conclusion : Although VATS requires a steep learning curve, it is an effective and minimally invasive procedure which provides biomechanical stability in terms of anterior column decompression and reconstruction for anterior load bearing, and preservation of intercostal muscles and diaphragm.

Management of Andersson Lesion in Ankylosing Spondylitis Using the Posterior-Only Approach: A Case Series of 18 Patients

  • Shaik, Ismail;Bhojraj, Shekhar Yeshwant;Prasad, Gautam;Nagad, Premik Bhupendra;Patel, Priyank Mangaldas;Kashikar, Aaditya Dattatreya;Kumar, Nishant
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1017-1027
    • /
    • 2018
  • Study Design: This retrospective study was conducted including 18 patients who underwent posterior-only stabilization and fusion procedure for pseudoarthrosis in the ankylosed spine from October 2007 to May 2015. Purpose: This study aimed to describe the treatment outcomes in 18 patients with Andersson lesion (AL) who were managed using the posterior-only approach. Literature Review: AL is an unstable, localized, vertebral, or discovertebral lesion of the spine. It is observed in patients with ankylosing spondylitis. The exact etiology of this disorder remains unclear, and the treatment guidelines are not clearly described. Methods: We analyzed 18 patients with AL who were treated with posterior long segment spinal fusion without any anterior interbody grafting or posterior osteotomy. Pre- and postoperative radiography, computed tomography, and recent follow-up images were examined. The pre- and postoperative Visual Analog Scale score and the Oswestry Disability Index score were evaluated for all patients. Whiteclouds' outcome analysis criteria were applied at the follow-up. Moreover, at study completion, patient feedback was collected; all the patients were asked to provide their opinion regarding the surgery and were asked whether they would recommend this procedure to other patients and them self undergo the same procedure again if required. Results: The most common site was the thoracolumbar junction. The symptom duration ranged from 1 month to 10 years preoperatively. Most patients experienced fusion by the end of 1 year, and the fusion mass could be observed as early as 4 months. Pseudoarthrosis void of up to 2.5 cm was noted to be healed in subsequent imaging. In addition, clinically, the patients reported good symptomatic relief. No patient required revision surgery. Whiteclouds' outcome analysis score at the latest follow-up revealed goodto-excellent outcomes in all patients. Conclusions: ALs can be treated using the posterior-only approach with long segment fixation and posterior spinal fusion. This is a safe, simple, and quick procedure that prevents the morbidity of anterior surgery.

A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System (척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구)

  • Kim, Sung-Min;Yang, In-Chul;Kang, Ho-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.

Multiple Spinal Revision Surgery in a Patient with Parkinson's Disease

  • Malla, Hridayesh Pratap;Kim, Min Ki;Kim, Tae Sung;Jo, Dae Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.655-658
    • /
    • 2016
  • Parkinson's disease (PD) patients frequently have several spinal deformities leading to postural instabilities including camptocormia, myopathy-induced postural deformity, Pisa syndrome, and progressive degeneration, all of which adversely affect daily life activities. To improve these postural deformities and relieve the related neurologic symptoms, patients often undergo spinal instrumentation surgery. Due to progressive degenerative changes related to PD itself and other complicating factors, patients and surgeons are faced with instrument failure-related complications, which can ultimately result in multiple revision surgeries yielding various postoperative complications and morbidities. Here, we report a representative case of a 70-year-old PD patient with flat back syndrome who had undergone several revision surgeries, including anterior and posterior decompression and fusion for a lumbosacral spinal deformity. The patient ultimately benefitted from a relatively short segment fixation and corrective fusion surgery.

Selection of Fusion Level for Adolescent Idiopathic Scoliosis Surgery : Selective Fusion versus Postoperative Decompensation

  • Kim, Do-Hyoung;Hyun, Seung-Jae;Kim, Ki-Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2021
  • Adolescent idiopathic scoliosis (AIS), which is associated with an extensive range of clinical and radiological presentations, is the one of the most challenging spinal disorders. The goals of surgery are to correct the deformity in 3 dimensions and to preserve motion segments while avoiding complications. Despite the ongoing evolution of classification systems and algorithms for the surgical treatment of AIS, there has been considerable debate regarding the selection of an appropriate fusion level in AIS. In addition, there is no consensus regarding the exact description, relationship, and risk factors of coronal decompensation following selective fusion. In this review, we summarize the current concepts of selection of the fusion level for AIS and review the available information about postoperative coronal decompensation.