• Title/Summary/Keyword: Spinal fusion

Search Result 279, Processing Time 0.025 seconds

A Prospective, Multi-Center, Double-Blind, Randomized Study to Evaluate the Efficacy and Safety of the Synthetic Bone Graft Material DBM Gel with rhBMP-2 versus DBM Gel Used during the TLIF Procedure in Patients with Lumbar Disc Disease

  • Hyun, Seung-Jae;Yoon, Seung Hwan;Kim, Joo Han;Oh, Jae Keun;Lee, Chang-Hyun;Shin, Jun Jae;Kang, Jiin;Ha, Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.562-574
    • /
    • 2021
  • Objective : This study is to evaluate the efficacy and safety of demineralized bone matrix (DBM) gel versus DBM gel with recombinant human bone morphogenetic protein-2 (rhBMP-2) used in transforaminal lumbar interbody fusion (TLIF). Methods : This study was designed as a prospective, multi-center, double-blind method, randomized study. All randomized subjects underwent TLIF with DBM gel with rhBMP-2 group (40 patients) as an experimental group or DBM gel group (36 patients) as a control group. Post-operative observations were performed at 12, 24, and 48 weeks. The spinal fusion rate on computed tomography scans and X-rays films, Visual analog scale pain scores, Oswestry disability index and SF-36 quality of life (QOL) scores were used for the efficacy evaluation. The incidence rate of adverse device effects (ADEs) and serious adverse device effects (SADEs) were used for safety evaluation. Results : The spinal fusion rate at 12 weeks for the DBM gel with rhBMP-2 group was higher with 73.68% compared to 58.82% for the DBM gel group. The 24 and 48 weeks were 72.22% and 82.86% for the DBM gel with rhBMP-2 group and 78.79% and 78.13%, respectively, for the DBM gel group. However, there were no significant differences between two groups in the spinal fusion rate at 12, 24, and 48 weeks post-treatment (p=0.1817, p=0.5272, p=0.6247). There was no significant difference between the two groups in the incidence rate of ADEs (p=0.3836). For ADEs in the experimental group, 'Pyrexia' (5.00%) was the most common ADE, followed by 'Hypesthesia', 'Paresthesia', 'Transient peripheral paralysis', 'Spondylitis' and 'Insomnia' (2.50%, respectively). ADEs reported in control group included 'Pyrexia', 'Chest discomfort', 'Pain', 'Osteoarthritis', 'Nephropathy toxic', 'Neurogenic bladder', 'Liver function analyses' and 'Urticaria' (2.86%, respectively). There was no significant difference between the two groups in the incidence rate of SADEs (p=0.6594). For SADE in the experimental group, ''Pyrexia' and 'Spondylitis' were 2.50%. SADE reported in the control group included 'Chest discomfort', 'Osteoarthritis' and 'Neurogenic bladder'. All SADEs described above were resolved after medical treatment. Conclusion : This study demonstrated that the spinal fusion rates of DBM gel group and DBM gel with rhBMP-2 group were not significantly different. But, this study provides knowledge regarding the earlier postoperative effect of rhBMP-2 containing DBM gel and also supports the idea that the longer term follow-up results are essential to confirm the safety and effectiveness.

Selection of Fusion Level for Adolescent Idiopathic Scoliosis Surgery : Selective Fusion versus Postoperative Decompensation

  • Kim, Do-Hyoung;Hyun, Seung-Jae;Kim, Ki-Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2021
  • Adolescent idiopathic scoliosis (AIS), which is associated with an extensive range of clinical and radiological presentations, is the one of the most challenging spinal disorders. The goals of surgery are to correct the deformity in 3 dimensions and to preserve motion segments while avoiding complications. Despite the ongoing evolution of classification systems and algorithms for the surgical treatment of AIS, there has been considerable debate regarding the selection of an appropriate fusion level in AIS. In addition, there is no consensus regarding the exact description, relationship, and risk factors of coronal decompensation following selective fusion. In this review, we summarize the current concepts of selection of the fusion level for AIS and review the available information about postoperative coronal decompensation.

The Effect of Perioperative Radiation Therapy on Spinal Bone Fusion Following Spine Tumor Surgery

  • Kim, Tae-Kyum;Cho, Wonik;Youn, Sang Min;Chang, Ung-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.597-603
    • /
    • 2016
  • Introduction : Perioperative irradiation is often combined with spine tumor surgery. Radiation is known to be detrimental to healing process of bone fusion. We tried to investigate bone fusion rate in spine tumor surgery cases with perioperative radiation therapy (RT) and to analyze significant factors affecting successful bone fusion. Methods : Study cohort was 33 patients who underwent spinal tumor resection and bone graft surgery combined with perioperative RT. Their medical records and radiological data were analyzed retrospectively. The analyzed factors were surgical approach, location of bone graft (anterior vs. posterior), kind of graft (autologous graft vs. allograft), timing of RT (preoperative vs. postoperative), interval of RT from operation in cases of postoperative RT (within 1 month vs. after 1 month) radiation dose (above 38 Gy vs. below 38 Gy) and type of radiation therapy (conventional RT vs. stereotactic radiosurgery). The bone fusion was determined on computed tomography images. Result : Bone fusion was identified in 19 cases (57%). The only significant factors to affect bony fusion was the kind of graft (75% in autograft vs. 41 in allograft, p=0.049). Other factors proved to be insignificant relating to postoperative bone fusion. Regarding time interval of RT and operation in cases of postoperative RT, the time interval was not significant (p=0.101). Conclusion : Spinal fusion surgery which was combined with perioperative RT showed relatively low bone fusion rate (57%). For successful bone fusion, the selection of bone graft was the most important.

An Image-Guided Robotic Surgery System for Spinal Fusion

  • Chung Goo Bong;Kim Sungmin;Lee Soo Gang;Yi Byung-Ju;Kim Wheekuk;Oh Se Min;Kim Young Soo;So Byung Rok;Park Jong Il;Oh Seong Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods for spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Some experiments employing the developed robotic surgery system are conducted. The experimental results confirm that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to respiration.

Development of An Image-Guided Robotic Surgery System for Spinal Fusion (영상 지원 척추 융합 수술 로봇 시스템의 개발)

  • Chung Goo-Bong;Lee Soo-Gang;Kim Sung-Min;Oh Se-Min;Yi Byung-Ju;Kim Young-Soo;Park Jong-Il;Oh Seong-Hoon;Kim Whee-Kuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.144-148
    • /
    • 2005
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods fer spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images and intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Several experiments employing the developed robotic surgery system are conducted. The experimental results confirmed that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to his/her respiration.

  • PDF

Efficacy of Spinal Implant Removal after Thoracolumbar Junction Fusion

  • Kim, Seok-Won;Ju, Chang-Il;Kim, Chong-Gue;Lee, Seung-Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.3
    • /
    • pp.139-142
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the efficacy of spinal implant removal and to determine the possible mechanisms of pain relief. Methods: Fourteen patient~with an average of 42 years (from 22 to 67 years) were retrospectively evaluated. All patients had posterior spinal instrumentation and fusion, who later developed recurrent back pain or persistent back pain despite a solid fusion mass. Patients' clinical charts, operative notes, and preoperative x-rays were evaluated. Relief of pain was evaluated by the Visual Analog Scale (VAS) pain change after implant removal. Clinical outcome using VAS and modified MacNab's criteria was assessed on before implant removal, 1 month after implant removal and at the last clinical follow-up. Radiological analysis of sagittal alignment was also assessed. Results: Average follow-up period was 18 months (from 12 to 25 months). There were 4 patients who had persistent back pain at the surgical site and 10 patients who had recurrent back pain. The median time after the first fusion operation and the recurrence of pain was 6.5 months (from 3 to 13 months). All patients except one had palpation pain at operative site. The mean blood loss was less than 100ml and there were no major complications. The mean pain score before screw removal and at final follow up was 6.4 and 2.9, respectively (p<0.005). Thirteen of the 14 patients were graded as excellent and good according to modified MacNab's criteria. Overall 5.9 degrees of sagittal correction loss was observed at final follow up, but was not statistically significant. Conclusion: For the patients with persistent or recurrent back pain after spinal instrumentation, removal of the spinal implant may be safe and an efficient procedure for carefully selected patients who have palpation pain and are unresponsive to conservative treatment.

Three-column reconstruction through the posterior approach alone for the treatment of a severe lumbar burst fracture in Korea: a case report

  • Woo Seok Kim;Tae Seok Jeong;Woo Kyung Kim
    • Journal of Trauma and Injury
    • /
    • v.36 no.3
    • /
    • pp.290-294
    • /
    • 2023
  • Generally, patients with severe burst fractures, instability, or neurological deficits require surgical treatment. In most cases, circumferential reconstruction is performed. Surgical methods for three-column reconstruction include anterior, lateral, and posterior approaches. In cases involving an anterior or lateral approach, collaboration with general or thoracic surgeons may be necessary because the adjacent anatomical structures are unfamiliar to spinal surgeons. Risks include vascular or lumbar plexus injuries and cage displacement, and in most cases, additional posterior fusion surgery is required. However, the posterior approach is the most common and anatomically familiar approach for surgeons performing spinal surgery. We present a case in which three-column reconstruction was performed using only the posterior approach to treat a patient with a severe lumbar burst fracture.

Clinical Comparison of Posterolateral Fusion with Posterior Lumbar Interbody Fusion

  • Kim, Chang-Hyun;Gill, Seung-Bae;Jung, Myeng-Hun;Jang, Yeun-Kyu;Kim, Seong-Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Objective : The purpose of this study is to compare the outcomes of two methods for stabilization and fusion : Postero-Lateral Fusion [PLF, pedicle screw fixation with bone graft] and Posterior Lumbar Interbody Fusion [PLIF, cage insertion] for spinal stenosis and recurred disc herniation except degenerative spondylolisthesis. Methods : Seventy one patients who underwent PLF [n=36] or PLIF [n=35] between 1997 and 2001 were evaluated prospectively. These two groups were compared for the change of interbody space, the range of segmental angle, the angle of lumbar motion, and clinical outcomes by Prolo scale. Results : The mean follow-up period was 32.6 months. The PLIF group showed statistically significant increase of the interbody space after surgery. However, the difference in the change of interbody space between two groups was insignificant [P value=0.05]. The range of segmental angle was better in the PLIF group, but the difference in the change of segmental angle was not statistically significant [P value=0.0l7]. Angle of lumbar motion was similar in the two groups. Changes of Prolo economic scale were not statistically significant [P value=0.193]. The PLIF group showed statistically significant improvement in Prolo functional scale [P value=0.003]. In Prolo economic and functional scale, there were statistically significant relationships between follow-up duration [P value<0.001]. change of interbody space [P value<0.001], and range of segmental angle [P value<0.001]. Conclusion : Results of this study indicate that PLIF is superior to PLF in interbody space augmentation and clinical outcomes by Prolo functional scale. Analysis of clinical outcomes showed significant relationships among various factors [fusion type, follow-up duration, change of interbody space, and range of segmental angle]. Therefore, the authors recommend instrumented PLIF to offer better clinical outcomes in patients who needed instrumented lumbar fusion for spinal stenosis and recurred disc herniation.

Minimally Invasive Transforaminal Lumbar Interbody Fusion Using a Single Interbody Cage and a Tubular Retraction System : Technical Tips, and Perioperative, Radiologic and Clinical Outcomes

  • Lee, Chang-Kyu;Park, Jeong-Yoon;Zhang, Ho-Yeol
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • Objective : A minimally invasive transforaminal lumbar interbody fusion (MIS TLlF) has recently been introduced. However, MIS TLlF is a technically challenging procedure. The authors performed retrospective analysis about MIS TLlF using a single interbody cage. Methods : Twenty-eight consecutive patients were treated by MIS TLlF. Of these 28 patients, 20 patients were included in this retrospective study. Perioperative, clinical, and radiologic outcomes were assessed. Clinical outcomes were assessed using Oswestry Disability Index (ODI) and Visual Analogue Scores (VAS). Fusion rates and cross-sections of operated spinal canals were assessed by CT. Results : Twelve patients underwent MIS TLlF at one segment and 8 patients at two segments (L3/4: 4, L4/5: 17, L5/S1: 7). Operation time for a single segment was 131.7 min and for two segment was 201.4 min, and corresponding blood losses were 208.3 mL and 481.2 mL, respectively. ODI and VAS scores were significantly improved at 6 months postop (ODI from 30.32 to 15.54, VAS from 7.80 to 2.20, p = 0.001) Twenty-two segments (78.6%) achieved grade I fusion, 4 segments (14.3%) achieved grade II, 2 segments (7.1%) achieved grade III and 0 segments achieved grade IV at 12 months. Postoperatively at 12 months, spinal canal cross sectional areas at disc spaces significantly increased from 157.5 to $294.3\;mm^2$ (p = 0.012). Conclusion : MIS TLlF achieved good clinical outcomes and high fusion rates. Our findings show that MIS TLlF performed with a single Interbody cage and a tubular retractor system can be used as a standard MIS TLlF technique.

Effect of Dietary Calcium on Spinal Bone Fusion in an Ovariectomized Rat Model

  • Cho, Jae-Hoon;Cho, Dae-Chul;Yu, Song-Hee;Jeon, Young-Hoon;Sung, Joo-Kyung;Kim, Kyoung-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • Objective : To evaluate the effect of calcium supplementation on spinal bone fusion in ovariectomized (OVX) rats. Methods : Sixteen female Sprague Dawley rats underwent bilateral ovariectomy at 12 weeks of age to induce osteoporosis and were randomly assigned to two groups : control group (n=8) and calcium-supplemented group (OVX-Ca, n=8). Autologous spinal bone fusion surgery was performed on both groups 8 weeks later. After fusion surgery, the OVX-Ca group was supplemented with calcium in drinking water for 8 weeks. Blood was obtained 4 and 8 weeks after fusion surgery. Eight weeks after fusion surgery, the rats were euthanized and the L4-5 spine removed. Bone fusion status and fusion volume were evaluated by manual palpation and three-dimensional computed tomography. Results : The mean fusion volume in the L4-5 spine was significantly greater in the OVX-Ca group ($71.80{\pm}8.06mm^3$) than in controls ($35.34{\pm}8.24mm^3$) (p<0.01). The level of osteocalcin, a bone formation marker, was higher in OVX-Ca rats than in controls 4 weeks ($610.08{\pm}10.41$ vs. $551.61{\pm}12.34$ ng/mL) and 8 weeks ($552.05{\pm}19.67$ vs. $502.98{\pm}22.76$ ng/mL) after fusion surgery (p<0.05). The level of C-terminal telopeptide fragment of type I collagen, a bone resorption marker, was significantly lower in OVX-Ca rats than in controls 4 weeks ($77.07{\pm}12.57$ vs. $101.75{\pm}7.20$ ng/mL) and 8 weeks ($69.58{\pm}2.45$ vs. $77.15{\pm}4.10$ ng/mL) after fusion surgery (p<0.05). A mechanical strength test showed that the L4-5 vertebrae in the OVX-Ca group withstood a 50% higher maximal load compared with the controls (p<0.01). Conclusion : Dietary calcium given to OVX rats after lumbar fusion surgery improved fusion volume and mechanical strength in an ovariectomized rat model.