• Title/Summary/Keyword: Spinal dorsal root ganglion neuron

Search Result 4, Processing Time 0.021 seconds

활성산소로 손상된 척수후근신경절세포에 대한 난참의 효과 (Effect of Salviae Miltiorrhzae Radix on Cultured Spinal Dorsal Root Ganglion Neurons Damaged by Reactive Oxygen Species)

  • 서은아;최유선;양현웅;이강창
    • 동의생리병리학회지
    • /
    • 제17권5호
    • /
    • pp.1305-1308
    • /
    • 2003
  • To evaluate the neurotoxicity of reactive oxygen species (ROS) in cultured cultured spinal dorsal root(DRG) neurons derived from neonatal mouse, Cytotoxicity was measured by MTS assay after cultured cells were grown for 3 hours in the media containing 1~60 μM hydrogen peroxide (H₂O₂). In addition the neuroprotective effect of Salviae Miltiorrhzae Radix (SMR) was measured in these cultrures. Cell viability was positively decreased in a dose- and time-dependent manner after exposure of cultured mouse DRG neurons to 30 tt M H202 for 3 hours. In the neuroprotective effect of SMR on H₂O₂-mediated toxicity, SMR prevented the H₂O₂-induced neurotoxicity in these cultures. From these results. it suggests that H₂0₂ is toxic in cultured mouse spinal motor neurons and selective herb extract such as Uncariae Ramulus Cum Uncis is effective in prevetion of the neurotoxicity induced by H₂O₂.

Effect of Rhizoma gastrodiae on glucose oxydase induced neurotoxicity in cultured mouse spinal dorsal root ganglion neurons

  • Park, Seung-Taeck;Park, Yang-Kyu;Park, Jae-Hwang;Cho, Kwang-Ho;Ryu, Do-Gon;Jeon, Byung-Hoon;Shin, Min-Kyo;Han, Du-Seok;Cho, Nam-Su;Shin, Dong-Min
    • Advances in Traditional Medicine
    • /
    • 제1권1호
    • /
    • pp.64-70
    • /
    • 2000
  • Effects of Rhizoma gastrodiae on glucose oxidase-induced neurotoxicity was investigated in cultured newborn mouse spinal dorsal root ganglion(DRG) neurons that were treated in the media with or without glucose oxidase. In addition, the protective effect of Rhizoma gastrodiae extract against glucose oxidase-induced neurotoxicity was examined. Cytotoxic values were expressed as a percentage of number of living cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In this paper, exposure of neurons to glucose oxidase resulted in a significant call death in a dose- and time-dependent manners in DRG neuron cultures. The decrease in cell viability induced by the glucose oxidase was blocked by Rhizoma gastrodiae extract. These results indicate that the neuroprotective effect of Rhizoma gastrodiae extract against glucose oxidase-induced neurotoxicity may result from a prevention or attenuation of oxidative damage induced by glucose oxidase.

  • PDF

Glucose Oxidase에 의(依)하여 손상(損傷)된 배양척수감각신경절세포(培養脊髓感覺神經節細胞)에 대(對)한 음양곽(淫羊藿)의 효과(效果) (Effect of Epimedium Koreanum Nakai on GO-Induced Neurotoxicity in Cultured Mouse Spinal Dorsal Root Ganglion Neurons)

  • 박승택;이호섭;윤용갑;박병림
    • 대한한의학방제학회지
    • /
    • 제7권1호
    • /
    • pp.143-151
    • /
    • 1999
  • 척수감각신경절세포에 대한 산소자유기의 신경독성효과에 대한 기전을 규명하기 위하여 여러 농도의 Glucose Oxidase(GO)를 배양 척수 감각신경절세포에 처리한 후 GO의 독성효과를 분석하였으며 또한 GO에 의하여 유발된 신경독성에 대한 음양곽(Epimedium Koreanum Nakai)의 방어효과를 MTT assay법에 의하여 조사하여 다음과 같은 결론을 얻었다. GO는 신경세포에 처리한 농도와 시간에 비례하여 세포의 생존율을 유의하게 감소시켰으며, 또한 음양곽이 GO의 독성효과를 효과적으로 방어하였다. 이상의 결과로부터 산소자유기인 GO는 생쥐의 배양 척수감각신경절세포에 독성을 나타냈으며 음양곽과 같은 한약추출물이 GO의 독성을 방어하는데 효과적인 것으로 나타났다.

  • PDF

Effect of Herba Epimedii on hydrogen peroxide induced neurotoxicity in cultured rat dorsal root ganglion neurons

  • Park Seung-Taeck;Lee Young-Mi;Hong Gi-Youn;Choi Ki-Uk;Min Bu-Ki;Yoon Hyang-Suk;Chang Chul-Ho;Lee Kang-Chang;Juhng Seon-Kwan;Han Du-Seok;Lee Gap-Sang;Seong Kang-Kyung;Lee Geon-Mok
    • Advances in Traditional Medicine
    • /
    • 제2권1호
    • /
    • pp.36-40
    • /
    • 2002
  • Effects of hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity were investigated in cultured newborn rat spinal dorsal root ganglion (DRG) neurons after DRG neurons were treated in the media containning various concentrations of $H_2O_2$. In addition, the protective effect of Herba Epimedii (HE) extract against $H_2O_2-induced$ neurotoxicity was examined. Cytotoxic values were determined by the cell viability of living cells using 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay. In the present study, exposure of neurons to $H_2O_2$ resulted in a significant cell death in a dose- and time-dependent manners in cultured DRG neurons. The decrement of cell viability by $H_2O_2$ was blocked by HE. These results suggest that the neuroprotective effect of HE against $H_2O_2-induced$ cytotoxicity may result from the prevention of injury induced by $H_2O_2$.