• 제목/요약/키워드: Spinal animals

검색결과 78건 처리시간 0.022초

Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation

  • Junxiu Jin;Dong Ho Kang;Jin Jeon;Hyung Gon Lee;Woong Mo Kim;Myung Ha Yoon;Jeong Il Choi
    • The Korean Journal of Pain
    • /
    • 제36권1호
    • /
    • pp.51-59
    • /
    • 2023
  • Background: This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation. Methods: Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord. Results: Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals. Conclusions: Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.

저출력 레이저 자극에 의한 척수내 신경세포의 활성변화 (The spinal neuronal activity induced by low power laser stimulation)

  • 오경환;최영덕;임종수
    • 대한물리치료과학회지
    • /
    • 제8권2호
    • /
    • pp.1005-1013
    • /
    • 2001
  • The present study was designed to investigate the effect of low power GaAlAs laser on spinal Fos expression related to the anti-nociceptive effect of laser stimulation. Low power GaAlAs laser was applied to either acupoint or non-acupoint for 2 hour under light inhalation anesthesia. Spinal Fos expression in the dorsal horn was compared to that obtained in inhalation anesthesia control group. Furthermore, we analyzed the effect of the local treatment of lidocaine on the spinal Fos expression evoked by low power GaAlAs laser stimulation. The results were summarized as follows: 1. In the normal animals, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with laser stimulation, Fos immunoreactive neurons were increased mainly in the medial half of ipsilateral laminae I-III at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and low power laser stimulation dramatically produced Fos expression in the spinal cord laminae that are related to the anti-nociceptive effect of laser stimulation. 2. In acupoint stimulated animals, 10mW of laser stimulation, not 3mW and 6mW intensity, significantly increased the number of Fos immunoreactive neurons in the spinal dorsal horn(p<0.05). However, laser stimulation on acupoint more dramatically increased the number of Fos immunoreactive neurons in the spinal cord rather than laser stimulatin on non acupoint. These result suggested that laser stimulatin on acupoint was more effective treatment to activate the spinal neuron than non acupoint stimulation. 3. The local treatment of lidocaine totally suppressed the activity of spinal neurons that were induced by lower power 1aser stimulation. These data indicated that the anti-nociceptive effect of laser stimulation was absolutely dependent upon the peripheral nerve activity in the stimulated location. In conclusion, these data indicate that 10mW of low power laser stimulation into acupoint is capable of inducing the spinal Fos expression in the dorsal horn related to the anti-nociceptive effect of laser stimulation, Furthermore, the induction of spinal Fos expression was totally related to the peripheral nerve activity in the laser stimulated area.

  • PDF

GaAsAl 레이저가 물리적 통증반응과 관련된 척수내 신경세포의 활성에 미치는 영향 (Effects of GaAsAl laser on the spinal neuronal activity induced by noxious mechanical stimulation)

  • 송영화;이영구;임종수
    • 대한물리치료과학회지
    • /
    • 제7권2호
    • /
    • pp.545-558
    • /
    • 2000
  • The present study was designed to investigate the effect of low power GaAsAl laser on Fos expression in the spinal cord induced by noxious mechanical stimulation. Noxious mechanical stimulation was applied to the right hind paw following 30min of low power laser treatment using different intensity and treatment point and the resulting Fos expression in the spinal cord dorsal horn was compared to that obtained in rats exposed only to the noxious mechanical stimulation. The results were summarized as follows: 1. In intact control rats, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with noxious mechanical stimulation, neurons with nuclei exhibiting Fos immunostaining were distributied mainly in the medial half of ipsilateral laminae I-V at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and noxious mechanical stimulation treated animals. 2. In acupoint treated animals, 10mW of laser stimulation, not 3mW intensity, significantly reduced the number of Fos immunoreactive neurons in the spinal dorsal horn induced by noxious mechanical stimulation(P<.01). However, the supressive effect of low power laser stimulatin was not observed in 3m Wand 10m W of laser stimulation into non-acupoint. These data indicate that 10mW of low power laser stimulation into acupoint is capable of inhibiting the expression of Fos in the dorsal horn induced by noxious mechanical stimulation. In conclusion, these findings raise the possibility that low power laser stimulation into acupoint may be a promising alternative medicine therapy for the mechanical stimulation induced pain in the clinical field.

  • PDF

Effects of Tumor Necrosis Factor Alpha Blocker Adalimumab in Experimental Spinal Cord Injury

  • Borcek, Alp Ozgun;Civi, Soner;Ocal, Ozgur;Gulbahar, Ozlem
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권2호
    • /
    • pp.73-76
    • /
    • 2015
  • Objective : Tumor necrosis factor alpha (TNF-${\alpha}$) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-${\alpha}$ agent, adalimumab, on spinal cord clip compression injury in rats. Methods : Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. Results : Animals that received anti-TNF-${\alpha}$ agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. Conclusion : These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats.

통각유발물질에 의한 척수후각세포의 반응에 미치는 Clonidine의 영향 (Effect of Clonidine on the Changes in Dorsal Horn Cell Activity Induced by Chemical Algogenics)

  • 이광훈;김진혁;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제22권2호
    • /
    • pp.245-257
    • /
    • 1988
  • The present study was undertaken to investigate the effect of clonidine on the response of the dorsal horn cells to intra-arterially administered bradykinin $(BK:40{\mu}g)$ and $K^+(4mg)$ in spinal cats and cats with intact spinal cord. The change in the activities of low threshold (LT), high threshold (HT) and wide dynamic range (WDR) cells induced by BK and $K^+$ were determined before and after treatment of animals with clonidine. Also studied was mechanism of inhibitory action of clonidine on the responses of dorsal horn cells to the chemical algogenics. Number of WDR cell responded to intra-arterially administered BK and $K^+$ was greater in spinal animals than in cats with intact spinal cord. Following administration of BK or $K^+$ no change was observed in the activity of LT cell whereas activity of HT cell increased invariably. The increased response of HT cell to BK and $K^+$ was markedly suppressed by clonidine. On the other hand, such inhibitory actions of clonidine were almost completely blocked by yohimbine. The majority of WDR cells were activated by $K^+$ while response of WDR cells to BK was diverse (excitatory, inhibitory or mixed). These results indicate that clonidine inhibits responses of the dorsal horn cells not only to thermal or mechanical stimulations but also to chemical algogenics, and that the inhibitory action of clonidine is generally mediated through excitation of ${\alpha}_2-adrenoreceptors$.

  • PDF

새로운 합성 농약인 KH-502의 급성 지연성 신경독성 시험에 관한 연구 (A Study on Acute Delayed Neurotoxicity of KH-502, A Newly Synthesized Insecticide)

  • 박재학;서광원;남기환;한상섭;이영순
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.317-322
    • /
    • 1997
  • Acute delayed neurotoxicity of KH-502 [O.O-Diethyl O-(1-phenyyl-3-trifluoromethyl-5-pyrazoyl) thiophosphoric acid ester], an insecticide synthesized newly in Korea, was studied in White Leghorn hens. The doses were determined on the basis of preliminary $LD_{50}$ study. High, middle and low doses were determined to be 1123 mg/kg, 762 mg/kg and 518 mg/kg, respectively. The animals were pretreated with atropine (30 mg/kg) prior to administration of KH-502. The chemical was administrated at the first and 21st day of the study. As positive controls, animals were admlnistrated with triorthocresylphosphate (TOCP 1000 mg/kg and 500 mg/kg). Animals administrated with TOCP or KH-502 were sacrificed by perfusion-fixation at 21st and 42nd day of the study, respectively. The central and peripheral nerve tissues were routinely treated for microscopic observation. As results, eight, three, one, and one chickens died within 2 day after adminiatration with signs of cholinergic acute toxicity in high, middle low and TOCP dose-group (500 mg/kg), respectively. No abnormal clinical signs were observed in the survived chickens administrated with KH-502 in the duration of the study. The chickens in positive control groups showed ataxia and incoordination at the 14th day after administration of TOCP. From necropsy, macroscopic changes were not observed in all groups including positive control groups. Histopathologically, oxonal swelling with myelin loss, focal gliosis, distention around axonal space were observed in the spinal cords of the chickens administrated with TOCP 1000 mg/kg. The lesions were distinct in the dorsal and lateral funiculi of cervical spinal cord, in the lateral and ventral funiculi of thoracic spinal cord and in ventral funiculi of lumbosacral spinal cord. Axonal swelling and mlcrogliosis were infrequently observed in the chickens of other groups including negative control one. However, they were nonspecifically distributed in the spinal cords. In this study, we concluded that the new chemical, KH-502 did not have acute delayed neurotoxicity in White Leghorn hens.

  • PDF

Dopaminergic Inhibition of Dorsal Horn Cell Activity in the Cat

  • Kim, Kyung-Chul;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.661-670
    • /
    • 1998
  • Dopamine has been generally known to exert antinociceptive action in behavioral pain test, such as tail flick and hot plate test, but there appears to be a great variance in the reports on the antinociceptive effect of dopamine depending on the dosage and route of drug administration and type of animal preparation. In the present study, the effects of dopamine on the responses of wide dynamic range (WDR) cells to mechanical, thermal and graded electrical stimuli were investigated, and the dopamine-induced changes in WDR cell responses were compared between animals with an intact spinal cord and the spinal animals. Spinal application of dopamine (1.3 & 2.6 mM) produced a dose-dependent inhibiton of WDR cell responses to afferent inputs, the pinch-induced or the C-fiber evoked responses being more strongly depressed than the brush-induced or the A-fiber evoked responses. The dopamine-induced inhibition was more pronounced in the spinal cat than in the cat with intact spinal cord. The responses of WDR cell to thermal stimulation were also strongly inhibited. Dopamine $D_2$ receptor antagonist, sulpiride, but not $D_1$ receptor antagonist, significantly blocked the inhibitory action of dopamine on the C-fiber and thermal responses of dorsal horn cells. These findings suggest that dopamine strongly suppresses the responses of WDR cells to afferent signals mainly through spinal dopamine $D_2$ receptors and that spinal dopaminergic processes are under the tonic inhibitory action of the descending supraspinal pathways.

  • PDF

Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

  • Lee, Jae-Hee;Back, Seung-Keun;Lim, Eun-Jeong;Cho, Gyu-Chong;Kim, Myung-Ah;Kim, Hee-Jin;Lee, Min-Hee;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권2호
    • /
    • pp.59-69
    • /
    • 2010
  • Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists ($1{\mu}g$ bicuculline/rat and $5{\mu}g$ phaclofen/rat), agonists ($1{\mu}g$ muscimol/rat and $0.5{\mu}g$ baclofen/rat) or GABA transporter (GAT) inhibitors ($20{\mu}g$ NNC-711/rat and $1{\mu}g$ SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.

A potential role of Schwann cells in spinal nerve roots in autoimmune central nervous system diseases

  • Moon, Changjong;Lee, Yongduk;Shin, Taekyun
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.483-486
    • /
    • 2004
  • The expression of nestin and vimentin in the spinal nerve roots of rats with experimental autoimmune encephalomyelitis (EAE) was studied to ascertain whether Schwann cells in the peripheral nerves respond to acute central nervous system autoimmune injury. Immunohistochemistry demonstrated that nestin was constitutively expressed in the dorsal roots of spinal nerves in control rats; its expression was enhanced in the spinal nerve roots of rats with EAE. Vimentin expression was weak in control rat spinal nerve roots, and it was increased in the dorsal roots of rats with EAE. It is postulated that normal animals have multipotent progenitor cells that constitutively express nestin and vimentin in the spinal nerve roots. In response to an injury of the central nervous system, these multipotent Schwann cells are activated in the spinal nerve roots through the expression of the intermediate filament proteins vimentin and nestin.

Surgical Management of Cervical Spinal Epidural Abscess Caused by Brucella Melitensis : Report of Two Cases and Review of the Literature

  • Ekici, Mehmet Ali;Ozbek, Zuhtu;Gokoglu, Abdulkerim;Menku, Ahmet
    • Journal of Korean Neurosurgical Society
    • /
    • 제51권6호
    • /
    • pp.383-387
    • /
    • 2012
  • Spinal epidural abscess, if especially caused by Brucellosis is a very rare disease which is usually a consequence of spondylodiscitis. The spinal column can be affected at any joint; however, the lumbar spine is the most common region, especially at the level of the L4-5 and L5-S1. The frequency of spinal involvement usually seen at the lumbar, thoracic and cervical spine respectively. As an occupational disease in farmers, veterinaries, butchers, laboratory staff and shepherds, brucellosis can also occur by direct contact to animals and infected materials or ingestion of raw cheese, milk or unpasteurized milk products. In this study, we presented two cases with cervical spinal epidural abscess caused by brucella melitensis, which was successfully treated by surgical approach. Initial treatment was combined with antibiotic therapy after the surgery for 3 months.