• Title/Summary/Keyword: Spinal animal

Search Result 121, Processing Time 0.02 seconds

Magnetic Resonance Imaging Diagnosis of Epidural Idiopathic Sterile Pyogranulomatous Inflammation in a Dog

  • Hwang, Taesung;Shin, Changho;Kim, Youngki;Yeon, Seongchan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.377-380
    • /
    • 2017
  • An 8-year-old, shih-tzu female dog was referred due to neurological signs including paraparesis and back pain. On the complete blood count, hematologic analysis showed elevated leukocytosis. Serum biochemical analysis revealed elevated serum alkaline phosphatase concentration and C-reactive protein concentration. On the neurologic exam, the dog was suspected to have thoracolumbar myelopathy. On magnetic resonance imaging, there were masses within the spinal canal at L1-3 intervertebral disc space that were located dorsal to spinal cord. It was hyperintense on T1-, T2-weighted magnetic resonance images, Fluid-attenuated inversion recovery, and fat suppression images. The contrast-enhanced T1-weighted images showed no enhancement. The lesions were well circumscribed. The spinal cord was compressed and displaced ventrally by the mass. After removal of the masses via L1-L3 dorsal laminectomy, pyogranulomatous inflammation was confirmed by histopathological examination. Six months after surgery, the dog recovered uneventfully and remained fully ambulatory with no neurological deficits. This case demonstrates the utility of magnetic resonance imaging for the diagnosis of spinal canal pyogranulomatous inflammation.

Lomustine Plus Hydroxyurea Chemotherapy for Primary Intramedullary Spinal Cord Tumor in a Maltese Dog

  • Song, Joong-Hyun;Yu, Do-Hyeon;Hwang, Tae-Sung;Lee, Hee-Chun;An, Su-Jin;Sur, Jung-Hyang;Kim, Young Joo;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.36 no.3
    • /
    • pp.180-183
    • /
    • 2019
  • A 7-year-old, male Maltese dog with a body weight of 2.8 kg was presented with a history of hind limbs ataxia that progressed to tetraparesis over a one-month period. Based on physical and neurological examinations, tetraparesis with concomitant UMN signs, kyphosis and severe neck pain were identified. On MRI scan, we tentatively diagnosed this patient as a primary intramedullary spinal cord tumor. Therapy with lomustine plus hydroxyurea and prednisolone was initiated and the clinical signs rapidly improved. The patient was regularly checked by MRI scan and the range of the mass was gradually reduced to complete remission for 11 months. About 19 months after treatment, the patient showed anemia and hematochezia which suspected as adverse effects of chemotherapy. The condition was getting worse over 2 months and the patient suddenly expired 657 days after initial presentation. On histopathological examination, the spinal cord sample was identified as a neuronal atrophy without evidence of tumor cell.

Animals models of spinal cord contusion injury

  • Verma, Renuka;Virdi, Jasleen Kaur;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.12-21
    • /
    • 2019
  • Spinal cord contusion injury is one of the most serious nervous system disorders, characterized by high morbidity and disability. To mimic spinal cord contusion in humans, various animal models of spinal contusion injury have been developed. These models have been developed in rats, mice, and monkeys. However, most of these models are developed using rats. Two types of animal models, i.e. bilateral contusion injury and unilateral contusion injury models, are developed using either a weight drop method or impactor method. In the weight drop method, a specific weight or a rod, having a specific weight and diameter, is dropped from a specific height on to the exposed spinal cord. Low intensity injury is produced by dropping a 5 g weight from a height of 8 cm, moderate injury by dropping 10 g weight from a height of 12.5-25 mm, and high intensity injury by dropping a 25 g weight from a height of 50 mm. In the impactor method, injury is produced through an impactor by delivering a specific force to the exposed spinal cord area. Mild injury is produced by delivering $100{\pm}5kdyn$ of force, moderate injury by delivering $200{\pm}10kdyn$ of force, and severe injury by delivering $300{\pm}10kdyn$ of force. The contusion injury produces a significant development of locomotor dysfunction, which is generally evident from the $0-14^{th}$ day of surgery and is at its peak after the $28-56^{th}$ day. The present review discusses different animal models of spinal contusion injury.

Imaging Features of Solitary Spinal Plasmacytoma in a Dog (개 척추에서 발생한 고립성 형질세포종의 자기공명영상 증례)

  • Keh, Seo-Yeon;Choi, Mi-Hyun;Lee, Nam-Soon;Kim, Tae-Hyun;Jang, Jae-Young;Kim, Hyun-Wook;Yoon, Junghee
    • Journal of Veterinary Clinics
    • /
    • v.31 no.3
    • /
    • pp.237-240
    • /
    • 2014
  • A 12-year-old, intact, female Alaskan malamute presented with severe spinal pain and hind limb lameness. On radiographs, a round, demarcated lytic lesion was identified in the central fifth lumbar vertebra. On magnetic resonance imaging (MRI), the lesion involving the spinal cord appeared hypointense on T1 weighted, hyperintense on T2 weighted, heterogeneously enhanced on post-contrast T1 weighted, and hypointense on GE images. A focal, small, ill-defined, lytic lesion was also observed radiographically in the sixth lumbar vertebra, it appeared as a focal hyperintense lesion on T1 weighted, T2 weighted, and GE images and showed focal enhancement on post-contrast T1 weighted images. She was euthanized owing to extreme pain and severe and progressive clinical signs; a plasmacytoma was histopthologically diagnosed. This report presents an unusual type of spinal tumor, plasmacytoma. MRI is a useful modality to evaluate the anatomic location and extension of spinal lesions.

Effect of Spinal Cord Removal before or after Splitting and Washing on CNST Decontamination of Beef Carcasses

  • Lim, D.G.;Kim, D.H.;Lee, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1770-1776
    • /
    • 2007
  • Beef carcasses were examined to explore the effects of spinal cord removal and washing on central nervous system tissue (CNST) decontamination of the surface during the slaughtering process. A total of 15 carcasses were split by sawing centrally down the vertebral column and left sides of split carcasses were used for analysis. Samples were collected by swabbing the surface from 4 defined parts on the interior and 4 on the exterior of carcasses from the abattoir and analyzed using an ELISA-based test. The results showed that automatic and manual spray washing decreased CNST contamination, especially on the interior ventral parts of carcass surfaces (p<0.01), but did not decrease CNST on the interior dorsal parts. Increasing washing time to 60 s did not affect the reduction of CNST contamination. Samples following spinal cord removal prior to splitting showed lower calculated levels of "risk material" than the stated limit of detection (0.1%) of the ELISA kit on interior and exterior carcass parts (p<0.01). Therefore, spinal cord removal prior to splitting could be a very effective way to minimize CNST contamination of beef carcasses.

Surgical treatment of spinal cord compression in client owned dogs with different grades of neurological dysfunction

  • Kuricova, Maria;Ledecky, Valent;Liptak, Tomas
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.113-116
    • /
    • 2016
  • Our retrospective study reports the clinical findings and population characteristics of 81 surgically treated dogs for spinal cord compression. We compared the outcome of dogs with different grades of neurological dysfunction due to spinal cord compression and focused on the long-term outcome of surgical treatment, for which there are only a few recent records. We recorded a 13.6% recurrence, regardless of the degree of dysfunction. However, the degree of dysfunction negatively affected the recovery length.

Diagnosis of Spinal Arachnoid Cyst using Magnetic Resonance Imaging in a Dog (개에서 자기공명영상을 이용한 척추부 지주막 낭종의 진단)

  • Shin, Chang-ho;Kim, Young-ki;Hwang, Tae-sung;Yoon, Young-min;Jung, Dong-in;Yeon, Seong-chan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.464-468
    • /
    • 2015
  • A 6-year-old, intact male maltese was presented with hindlimb ataxia of 4 day duration. Physical and neurological examinations revealed a bright, alert, and responsive dog, with no evidence of cranial nerve deficits, conscious proprioceptive deficits. Spinal reflexes of the hind and forelimbs were normal. Patellar, cranial tibial, and withdrawal reflexes were normal. Pain could not be elicited on manipulation of the neck or palpation of the spinal column. Survey radiographs of the vertebral column were unremarkable. Computed tomography (CT) scans in the transverse plane were performed. The results of CT imaging were unremarkable. Magnetic resonance imaging (MRI) in both sagittal and transverse planes was performed. The extent of the lesion was 25 mm in length by 4 mm in thickness. The spinal cord was deviated ventrally and appreared thinner. On T1-weighted and FLAIR images, a discrete hypointense lesion dorsal to the spinal cord was observed at L1-2 which was contiguous with the subarachnoid space. On T2-weighted images, this region was hyperintense, consistent with a fluid-filled structure. The signal intensity of the cysts was equivalent to cerebrospinal fluid (CSF). Surgical treatment involving dorsal laminectomy had successful outcomes.

The effect of low power GaAlAs laser stimulation on anti-nociception and spinal neuronal activity related to pain sensation in the polyarthritis of rats (다발성 관절염 실험동물 모델에서 저출력 GaAlAs 레이저 자극의 진통효능 및 통증관련 척수내 신경세포의 활성변화에 관한 연구)

  • Chang, Moon-Kyung;Choi, Young-Duk;Park, Bong-Soon
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.180-189
    • /
    • 2003
  • The experiments were designated to evaluate the anti-nociceptive effect of low power laser stimulation on acupoint or non-acupoint using arthrogenic solution induced poly arthritis animal model. Evaluation of potential antinociceptive effect of low power laser on arthritis has employed measurements of the foot bending test, the development of either thermal or mechanical hyperalgesia following the arthritis induction. The analysis of thermal hyperalgesia includes Hargreaves's method. Randall-Sellitto test was utilized for evaluating mechanical hyperalgesia. In addition, the antinociceptive effect of low power laser stimulation on arthritis induced spinal Fos expression was analyzed using a computerized image analysis system. The results were summerized as follows: 1. In laser stimulation on acupoint treated animal, laser stimulation dramatically inhibited the development of pain in foot bending test as compared to those of non acupoint treated animal group and non treated animal group. 2. The threshold of thermal stimulation was significantly increased by low power laser stimulation on acupoint as compared to that of non treated control group. 3. Laser stimulation on acupoint dramatically attenuated the development of mechanical hyperalgesia as compared to that of non treated group. 4. Low power laser stimulation on acupoint significantly suppressed arthritis induced Fos expression in the lumbar spinal cord at 3 week post arthritis induction. In conclusion, the results of the present study demonstrated that low power laser stimulation on acupoint has potent anti-nociceptive effect on arthritis. Additional supporting data for an antinociceptive effect of laser stimulation was obtained using Fos immunohistochemical analysis on spinal cord section. Those data indicated that laser stimulation induced antinociception was mediated by suppression of spinal neuron activity in pain sensation.

  • PDF

Distribution of Neurons in the Lateral Reticular Nucleus Projecting to Cervical, Thoracic, and Lumbar Segments , of the Spinal Cord in the Rat

  • Lee, Hyun Sook
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • Location of the neurons in the lateral reticular nucleus projecting to dorsal horn of the cervical, thoracic, or lumbar spinal cord was investigated in the rat using the technique of retrograde transport of horseradish peroxidase. The projection was bilateral with ipsilateral predominance. Neurons projecting to the cervical spinal cord were located near the medial, dorsal, and lateral perimeter of the magnocellular division of the lateral reticular nucleus, whereas cells projecting to the thoracic and lumbar spinal cord were localized in the medial and dorsal boundaries of the magnocellular division. The labeled neurons were distinctly multipolar in shape and measured approximately 10-15 $\mu m$ in their greatest transverse diameter. A few neurons were also observed in the subtrigeminal nucleus, whereas few cells were in the parbocellular division. These observations provide an anatomical substrate for the functional implication of the lateral reticular nucleus in the regulation of spinal nociceptive transmission and vascular hemodynamics via the descending pathway into the spinal cord.

  • PDF

Functional Changes of Spinal Sensory Neurons Following Gray Matter Degeneration

  • Park, Sah-Hoon;Park, Jong-Seong;Jeong, Han-Seong
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.289-297
    • /
    • 1996
  • Excitatory amino acids (EAA) are thought to play an important role in producing cell death associated with ischemic and traumatic spinal cord injury. The present study was carried out to determine if the response characteristics of spinal sensory neurons in segments adjacent to degeneration sites induced by EAA are altered following these morphological changes. Intraspinal injections of quisqualic acid (QA) produced neuronal degeneration and spinal cavitation of gray matter. The severity of lesions was significantly attenuated by pretreatment with a non-NMDA antagonist NBQX. In extracellular single unit recordings, dorsal horn neurons in QA injected animal showed the increased mechanosensitivity, which included a shift to the left in the stimulus-response relationship, an increased background activity and an increase in the duration of after-discharge responses. Neuronal responses, especially the C-fiber response, to suprathreshold electrical stimulation of sciatic nerve also increased in most cases. These results suggest that altered functional states of neurons may be responsible for sensory abnormalities, e.g. allodynia and hyperalgesia, associated with syringomyolia and spinal cord injury.

  • PDF