• Title/Summary/Keyword: Spin-orbit energy

Search Result 88, Processing Time 0.025 seconds

Optical Properties for $CuGaTe_2/GaAs$ Epilayers Grown by Hot Wall Epilaxy (Hot Wall Epitaxy (HWE) 방법으로 성장된 $CuGaTe_2/GaAs$ 에피레이어의 광학적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuGaT_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, $CuGaTe_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is $2.1{\mu}m$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $CuGaTe_2$ single crystal thin film, we have found that the values of spin orbit coupling ${\Delta}s.o$ and the crystal field splitting ${\Delta}cr$ were $0.079\underline{1}eV$ and $0.246\underline{3}eV$ at 10 K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.047\underline{0}eV$ and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be $0.049\underline{0}eV$, $0.055\underline{8}eV$, respectively.

  • PDF

Properties of Photocurrent and Growth of $CuInSe_2$ single crystal thin film ($CuInSe_2$ 단결정 박막 성장과 광전류 특성)

  • S.H. You;K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.83-83
    • /
    • 2003
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.62$\times$10$^{16}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10 K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 7 meV and 5.9 meV, respectivity. By Haynes rule, an activation energy of impurity was 59 meV.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of $CdIn_2S_4$/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의해 성장된 $CdIn_2S_4$ 단결정 박막의 가전자대 갈라짐에 대한 광전류 연구)

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.79-80
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-Insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation. $E_g(T)=2.7116 eV-(7.74{\times}10^{-4} eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and C1-exciton peaks for n = 1.

  • PDF

Synthesis of CoTiOx and Its Catalytic Activity in Continuous Wet TCE Oxidation (CoTiOx의 합성 및 연속 습식 TCE 산화반응에서의 촉매활성)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1431-1437
    • /
    • 2007
  • Cobalt titanates($CoTiO_x$), such as $CoTiO_3$ and $Co_2TiO_4$, have been synthesized via a solid-state reaction and characterized using X-ray diffraction(XRD) and X-ray photoelectron spectroscopic(XPS) measurement techniques, prior to being used for continuous wet trichloroethylene(TCE) oxidation at $36^{\circ}C$, to support our earlier chemical structure model for Co species in 5 wt% $CoO_x/TiO_2$(fresh) and(spent) catalysts. Each XRD pattern for the synthesized $CoTiO_3$ and $Co_2TiO_4$ was very close to those obtained from the respective standard XRD data files. The two $CoTiO_x$ samples gave Co 2p XPS spectra consisting of very strong main peaks for Co $2p_{3/2}$ and $2p_{1/2}$ with corresponding satellite structures at higher binding energies. The Co $2p_{3/2}$ main structure appeared at 781.3 eV for the $CoTiO_3$, and it was indicated at 781.1 eV with the $Co_2TiO_4$. Not only could these binding energy values be very similar to that exhibited for the 5 wt% $CoO_x/TiO_2$(fresh), but the spin-orbit splitting(${\Delta}E$) had also no noticeable difference between the cobalt titanates and a sample of the fresh catalyst. Neither of all the $CoTiO_x$ samples were active for the wet TCE oxidation, as expected, but a sample of pure $Co_3O_4$ had a good activity for this reaction. The earlier proposed model for the surface $CoO_x$ species existing with the fresh and spent catalysts is very consistent with the XPS characterization and activity measurements for the cobalt titanates.

Properties for the $CdIn_2Te_4$ Single Crystal

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • The $p-CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the Photoluminescence spectra of the as-grown $CdIn_2Te_4$ crystal and the various heat-treated crystals, the $(D^{o},X)$ emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_2Te_4:Cd$, while the $(A^{o},X)$ emission completely disappeared in the $CdIn_2Te_4:Cd$. However, the $(A^{o},X)$ emission in the photoluminescence spectrum of the $CdIn_2Te_4:Te$ was the dominant intensity like an as-grown $p-CdIn_2Te_4$ crystal. These results indicated that the $(D^{o},X)$ is associated with $V_{Te}$ acted as donor and that the $(A^{o},X)$ emission is related to $V_{Cd}$ acted as acceptor, respectively. The $p-CdIn_2Te_4$ crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of $(D^{o},\;A^{o})$ emission and its TO Phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and accepters such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_2Te_4$ was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF

Growth and Optoelectrical Properties for $CuInS_2$ Single Crystal Thin Film ($CuInS_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.230-233
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuInS_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuInS_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.524\;{\AA}$ and $11.142\;{\AA}$, respectively. To obtain the single crystal thin films, $CuInS_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperature were 640 t and 430 t, respectively and the thickness of the single crystal thin films was $2{\mu}m$. Hall effect on this sample was measured by the method of van dot Pauw and studied on carrier density and temperature dependence of mobility. The carrier density and mobility deduced from Hall data are $9.64{\times}10^{22}/m^3,\;2.95{\times}10^{-2}\;m^2/V{\cdot}s$ at 293 K, respectively The optical energy gaps were found to be 1.53 eV at room temperature. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the thin film, we have found that the values of spin orbit coupling splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0211 eV and 0.0045 eV at 10 K, respectively. From PL peaks measured at 10K, 807.7nm (1.5350ev) mean Ex peak of the free exciton emission, also 810.3nm (1.5301eV) expresses $I_2$ peak of donor-bound exciton emission and 815.6nm (1.5201eV) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 862.0nm (1.4383eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2 (헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성)

  • Jeong, Tae Seong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.451-455
    • /
    • 2019
  • The electromagnetic and thermal properties of a heavy fermion $CeNi_2Ge_2$ are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy $E_F$ and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into $4f_{7/2}$ and $4f_{5/2}$ states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of $CeNi_2Ge_2$ with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in $CeNi_2Ge_2$, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.