• Title/Summary/Keyword: Spin-echo image

Search Result 91, Processing Time 0.043 seconds

The Study on Reduction of Image Distortion by using Single-Shot Turbo Spin Echo in Brain Stem Diffusion MRI (자기공명 확산강조영상검사 시 영상왜곡 감소에 관한 연구)

  • Choi, Kwan-Woo;Lee, Ho-Beom;Na, Sa-Ra;Yoo, Beong-Gyu;Son, Soon-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Single-shot echo planar imaging(SS-EPI) is well established as high sensitivity for ischemic stroke. However, it is prone to susceptibility artifact in brain stem that diminish the image quality. single-shot turbo spin echo(SS-TSE) is a new DWI technique that can reduce susceptibility artifact. Thus, this research was conducted so as to reduce geometric distortion in brain stem by using single-shot turbo spin echo technique. Thirty patients without brain disease underwent diffusion MR on a 3T scanner with SS-EPI and SS-TSE. Obtained images with both sequences were analyzed for geometric distortion and error percentage as well. Image quality in terms of geometric distortion of SS-TSE were found to be significantly better than those for SS-EPI. And error percentage was considerably reduced for 2.4% of b0 image(from 11.1% to 8.7%), 1.2% of b1000 image(from 11.4% to 10.1%), respectively. In summary, diffusion MR using SS-TSE significantly reduce geometric distortion compared to SS-EPI in brain stem and may provide improved diagnostic performance.

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

Magnetic resonance imaging characteristic of lymph nodes: Comparison of T1 and T2 weighted image in normal rabbits (림프절의 자기공명영상의 특징: 가토에서 T1과 T2 강조영상의 비교)

  • Lee, Ki-chang;Choi, Min-cheol;Choi, Ho-Jung;Yoon, Jung-hee;Choi, Seong-hong;Moon, Woo-kyung;Chung, Jin-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.311-315
    • /
    • 2004
  • The detection of lymph node metastasis is an important step in tumor staging and is significant for therapy planning. It has been challenged to yield an appropriate image with diagnostic methods such as Magnetic Resonance (MR) and Computed Tomography (CT). Though CT has been used widely and accessed easily to show internal organs, it can hardly provide difference between lymph node and adjacent vessel or fat tissue. It has been well established that MR can reveal the subtle discrepancy within soft tissue. This study investigated the suitability of MR lymph node imaging without contrast enhancement by comparison of T1-weighted image (T1WI) and T2- weighted image (T2WI) in ten normal rabbits. According to the pulse sequence optimized from preliminary study, T1-weighted spin-echo (repetition time/echo time=400/12 ms) and T-2 weighted fast spin-echo (repetition time/echo time=3500/84 ms) images covering the hind limbs and pelvic region were acquired at 1.5 T. Two radiologists scrupulously evaluated the MR images in consensus. And signal intensity of lymph nodes was compared with that of adjacent fat. Statistical analysis showed that T1-weighted coronal image visualized the lymph nodes (iliac, superficial inguinal and popliteal lymph nodes) quickly and consistently rather than T2-weighted one. Conclusively, T1WI for evaluation of lymph nodes is moderately better than T2WI and appears to have potential for quick and sufficient mapping of the lymph nodes. In addition, this normal MR image of lymph nodes could be applied to further study for the evaluation of lymphatic system in abscess and tumor bearing animal model.

Simulation and Measurement of Signal Intensity for Various Tissues near Bone Interface in 2D and 3D Neurological MR Images (2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기 계산 및 측정)

  • Yoo, Done-Sik
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.

  • PDF

Metal Artifact Caused by Magnetic Field Strength and Sequence on T1WI-MRI (자기공명영상에서 자장세기와 시퀀스에 따른 아티팩트 변화)

  • Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.302-308
    • /
    • 2010
  • In MRI, the Ferromagnetic artifact is generated by the metalization within in which the before inspection removal is impossible and the distortion of an image is brought. The distortion measure according to the steel for each sequence of T1 image and magnetic field intensity are analyzed and minimized method is looked into. We used SIEMENS 1.5T and 3.0T MRI for experiment equipment. First, it places within the Phantom making a metalization(Ti+Al, Stainless, Nitinol) on 1.5T, 3.0T MRI and the T1 weighted image for each Sequence is acquired. The distortion of an image and about adjacent portion change of the metal material were compared through the obtained image, we analyzed. In all metalizations, a distortion was generated and a distortion was few in particularly, and Titanium-Aluminium alloy. And the extent of a distortion was worse image in the Turbo spin Echo. The use of the Titanium-Aluminium alloy the inserted in an internal material of the metalization is recommend. and, equipment of 1.5T the patient inserting a metal in an internal is used in an inspection than equipment of 3.0T. Also, the sequence is suitable when it obtains the optimum T1 weighted image of an impersonate to use the Turbo spin Echo.

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D FSPGR T1 Technique and Fat Suppressed Isotropic 3D FSE T1 Technique when Examining MRI of Patient with Triangular Fibrocartilage Complex (TFCC) Tear (삼각 섬유성 연골(TFCC) 손상 환자의 자기공명영상 검사 시 Fat Suppressed 3D FSPGR T1 강조 기법에 대한 Fat Suppressed Isotropic 3D FSE T1 강조 기법의 비교 분석 및 유용성에 관한 평가)

  • Kang, Sung-Jin;Cho, Yong-Keun;Lee, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.105-114
    • /
    • 2016
  • In this study, For assessment of triangular fibrocartilage complex (TFCC) injury, we acquired images by fat suppressed 3D fast spoiled gradient recalled T1 and fat suppressed Isotropic 3D fast spin echo T1 techniques. For quantitative evaluation, measured signal to noise ratio and contrast to noise ratio and verified statistical significance between two imaging techniques by Mann-Whitney U verification. And for qualitative evaluation, marked 4-grade scoring (0: non diagnostic, 1: poor, 2: adequate, 3: good) on shape of TFCC, artifacts by partial volumes, description of the lesions by two radiologist, verified coincidence between 2 observer using Kappa-value verification. We used 3.0 Tesla MR equipment and 8-channel RF coil for imaging acquisition. As quantitative evaluation results, signal to noise ratio and contrast to noise ratio value of Isotropic 3D fast spin echo T1 technique is higher in every image sections, also between two imaging techniques by Mann-Whitney U verification was statistically significant (p < 0.05). As qualitative results, observer 1, 2 marked a higher grade on Isotropic 3D FSE T1 technique, coincidence verification of evaluation results between two observers by Kappa-value verification was statistically significant (p < 0.05). As a result, during MRI examination on TFCC injury, fat suppressed Isotropic 3D fast spin echo T1 technique is considered offering more useful information about abnormal lesion of TFCC.

The Suppressing of MR Image Artifacts using Phases Cycling in Fast SE Sequence

  • Shin, Yong-Jin;Jeong, Gwang-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • The correction of image artifacts due to misadjustment in tuning of RF coils (tip angle) and in the RF single sideband spectrometer was investigated using phase cycling of the $\pi$/2 and $\pi$ pulses in spin-echo sequences. A general procedure was developed for the systematic design of phase cycles that select desirable coherence transfer pathways. To analyze a phase cycling sequence, changes in the coherence level and phase factor for each RF pulse in the spin-echo cycle must be determined. Four different phase cycling schemes (FIXED, ALTERNATE, FORWARD, REVERSED) to suppress unwanted signal components such as mirror and ghost images were evaluated using two signal acquisitions. When the receiver phase factor is cycled counter-clockwise (REVERSED), these artifacts are completely removed.

  • PDF