• Title/Summary/Keyword: Spin valve

Search Result 227, Processing Time 0.026 seconds

Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device (거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성)

  • Park, Kwang-Jun;Choi, Jong-Gu;Lee, Sang-Suk;Lee, Bum-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • We fabricated a sensor for measuring the water level and water temperature using GMR-SV (giant magnetoresistance-spin valve) device, simultaneously. It could be applied to the medical cooling system of the potassium titanylphosphate KTP) laser system for the therapy of a benign prostatic hyperplasia. The middle point of GMR-SV device was set to the near position of a high magnetic sensitivity with 2.8%/Oe. The sensitivity for the water level and water temperature of the fabricated sensor were $400\;m{\Omega}/mm$ and $100\;m{\Omega}/^{\circ}C$, respectively.

Hysteresis Loops of Magnetically Coupled Multilayers - Experiment and Calculations

  • Czapkiewicz, M.;Stobiecki, T.;Rak, R.;Wrona, J.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.60-64
    • /
    • 2004
  • In this paper calculations of magnetisation and magnetoresistance characteristics of the Spin Valve (SV) and Pseudo Spin Valve (PSV) spintronics structures are reported and compared with the experimental data. The magnetisation reversal process was analysed with respect to the Stoner- Wohlfahrt model of total surface energy in terms of uniaxial anisotropy, exchange coupling between ferromagnetic layers, unidirectional exchange anisotropy of pinned layer (modelled by exchange coupling between magnetisation of pinned layer and net magnetisation of antiferromagnetic layer with high anisotropy). The numerical simulation of the model to the experimental magnetisation data yielded the above parameters for SV and PSV structures. These parameters were used to more sophistically micromagnetic modelling tool originating from the project called Object Oriented Micromagnetic Framework. Influence of the shape anisotropy of the Magnetic Tunnelling Junction cell used in MRAM was simulated by means of micromagnetic simulations. Results were compared to those obtained from the spot Kerr measurements.

Exchange and Interlayer Coupling in NiO Spin Valve Films (NiO 스핀밸브 박막에서 교환결합과 사잇층 결합에 관한 연구)

  • 박창만;고성호;황도근;이상석;이기암
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.258-264
    • /
    • 1997
  • Exchange and interlayer couplings between a NiFe ferromagnetic layer and an antiferromagnetic NiO layer in NiO/NiFe/Cu/NiFe spin-valve films prepared by rf/dc magnetron sputtering were investigated. The interlayer coupling field ($H_{int}$ decreased with the Cu layer thickness, and the exchange coupling field $(H_{ex}$ saturated to 90 Oe. the magnetitudes of $H_{ex}$ and $H_{int}$ decreased with increasing thickness of the pinned NiFe layer. The increase of $H_{int}$ with the free NiFe layer may be due to the increased magnetization.

  • PDF

Effects of Ultrathin Co Insertion Layer on Magnetic Anisotropy and GMR Properties of NiFe/Cu/Co Spin Valve Thin Films (NiFe/Cu 계면에 삽입된 Co 층이 NiFe/Cu/Co 스핀밸브 박막의 거대자기저항 특성과 자기이방성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.251-255
    • /
    • 1999
  • NiFe(60 $\AA$)/Co(0$\AA$$\leq$x$\AA$$\leq$15$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were prepared on 4$^{\circ}$ tilt-cut Si(111) substrates with a 50 $\AA$ thick Cu underlayer without applying any external magnetic field during the deposition, and the effects of inserted ultrathin Co layer on magnetic anisotropy and GMR properties of the NiFe(60 $\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valves were investigated. As the ultrathin Co layer was inserted into the NiFe/Cu interface of the spin valves, GMR ratio was increased from about 1.5% to 3.5%, and the easy axis of NiFe(60 $\AA$) layer was rotated by 90$^{\circ}$. Accordingly, it was aligned along the same direction with the easy axis of Co(30 $\AA$)layer. Therefore, squared R-H curves was obtained in the spin valves, which is favorable properties for the digital GMR devices such as MRAM. In order to investigate the change of magnetic anisotropy of NiFe layer of the spin valves in more details,XRD measurement was performed using NiFe(500 $\AA$) and NiFe(500 $\AA$)/Co(10 $\AA$) thin films on the same templates. Strong (220) NiFe peak was observed in both films regardless of the inserted Co layer, so it was thought that the variation of magnetic anisotropy of NiFe layer is from the interface effect, the change of interface from NiFe/Cu to NiFe/Co, rather than the volume effect such as the change of magnetocrystalline effect.

  • PDF

Study on the Specular Effect in NiO spin-valve Thin Films (NiO 스핀밸브 박막의 Specular Effect에 의한 자기저항비의 향상에 대한 연구)

  • Choi, Sang-Dae;Joo, Ho-Wan;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.231-234
    • /
    • 2002
  • Magnetic properties are investigated for top- and bottom-type spin valves of Si/SiO$_2$/NiO(60nm)/Co(2.5nm)/Cu(1.95nm)/Co(4.5nm)/NOL(t nm; Nano Oxide layer). The MR ratios of the bottom-type spin valves with NOL are larger than those of the top-type spin valves. However, the enhancement of the former is lower than the latter. Both of spin-valves also showed almost constant Ap and smaller p. Enhanced MR ratios of spin valves with NOL result mainly from small values of with constant Ap which due to specular diffusive electron scattering at NOL(NiO)/metal interfaces.

Study on the Improvement of Exchange Bias and Magnetoresistance in Co/Cu/Co/FeMn Spin Valve by Heat Treatment (Co/Cu/Co/FeMn 스핀밸브의 자기저항 특성 향상 연구)

  • Kim, Hong-Jin;Bae, Jun-Soo;Noh, Eun-Sun;Lee, Taek-Dong;Lee, Hyuck-Mo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • It was observed that exchange bias field was increased with smooth surface and better ${\gamma}$-FeMn formation. Sputtering conditions were varied for the control of the surface roughness and ${\gamma}$-FeMn formation. From the results of Cu deposition as underlayer, it was found that ${\gamma}$-FeMn formation was closely related with the thickness of underlayer. After heat treatment, exchange bias field was increased over three times. This improvement was likely that the crystallites of ${\gamma}$-FeMn were well formed. In Co/Cu/Co/FeMn spin valve structure, magnetoresistance was increased over 1.4 times through the heat treatment. This was due to the disappearance of Co/Cu intermixed dead layer and removal of defect, and this was examined by AES analysis.

The Fabrication and Magnetoresistance of Nanometer-sized Spin Device Driven by Current Perpendicular to the Plane (수직전류 인가형 나노 스핀소자의 제조 및 자기저항 특성)

  • Chun, M.G.;Lee, H.J.;Jeung, W.Y.;Kim, K.Y.;Kim, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • In order to make submicron cell for spin-injection device, lift-off method using Pt stencil and wet etching was chosen. This approach allows batch fabrication of stencil substrate with electron-beam lithography. It simplifies the process between magnetic film stack deposition and final device testing, thus enabling rapid turnaround in sample fabrication. Submicron junctions with size of $200nm{\times}300nm$ and $500nm{\times}500nm$ 500 nm and pseudo spin valve structure of $CoFe(30{\AA})/Cu(100{\AA})/CoFe(120{\AA}$) was deposited into the nanojunctions. MR ratio was 0.8 and $1.1{\%}$, respectively and spin transfer effect was confirmed with critical current of $7.65{\times}10^7A/cm^2$.

Magnetic and Structural Properties of CoFeZr Alloy Films and Magnetoresistive Properties of Spin Valves Incorporating Amorphous CoFeZr Layer (CoFeZr 합금박막의 미세구조, 자기적 특성 및 비정질 CoFeZr 합금박막을 사용한 스핀밸브의 자기저항 특성에 관한 연구)

  • Ahn, Whang-Gi;Park, Dae-Won;Kim, Ki-Su;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.227-231
    • /
    • 2008
  • Magnetic and structural properties of CoFeZr alloy films as a function of Zr concentration and magnetoresistive properties of spin valves incorporated with amorphous CoFeZr alloy films have been studied. Magnetization and coercivity of CoFeZr alloy films decreased as the Zr content increased. A single amorphous CoFeZr phase was formed when the Zr content is about above 18 at%. Magnetoresistance ratio and exchange coupling field of spin valves with amorphous CoFeZr were reduced slightly as compared with spin valves with CoFe because the resistance of amophous CoFeZr is higher than that of crystalline CoFe. However, the ${\Delta}{\rho}$ of spin valves with amorphous CoFeZr was improved due to reduction of current shunting.