• Title/Summary/Keyword: Spin density

Search Result 344, Processing Time 0.033 seconds

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.

ESR spectrum change for the a-C : H films exposed in the atmosphere (공기 중에 노출된 a-C : H 박막의 ESR 스펙트럼 변화)

  • 윤원주;이정근
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2004
  • ESR spectrum change has been investigated for the PECVD deposited a-C : H films exposed in the atmosphere. Though depending on the deposition conditions, it was observed that generally ESR signal height decreased and linewidth increased as the exposure time increased. The spin density decreased down to 40-80% depending on samples. The decrease of spin density of the a-C : H films in the air was attributed to permeation of moisture into the films and subsequent migration and redistribution of hydrogens. And the ESR signal height increased again and the linewidth decreased when the a-C : H samples were placed again in the vacuum, which was attributed to oxygens extracted from the samples. Consequently, the ESR spectrum change for the a-C : H films exposed in the air was regarded to be associated with the decrease of spin density as well as the permeation of oxygens into films.

First-principles Study on the Magnetism of VRu(001) Surface (VRu(001) 표면의 자성에 대한 제일원리 연구)

  • Jang, Y.R.;Song, Ki-Myung;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.109-113
    • /
    • 2007
  • We investigated the magnetic properties of VRu(001) surface by using the all electron full-potenial linearized augmented planewave (FLAPW) energy band method within the GGA. We consider two different configurations, V and Ru surface layers, respectively. The V atoms in surface layer was calculated to have large magnetic moment of $1.71_{{\mu}_B}$ while the Ru surface layer to have nearly nonmagnetic state. The calculated spin-polarized density of states. spin density contour, and charge density were discussed in relation to the magnetic properties of VRu(001) surface.

Characterization of F- and Al-codoped ZnO Transparent Conducting Thin Film prepared by Sol-Gel Spin Coating Method

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.338-342
    • /
    • 2016
  • ZnO thin film co-doped with F and Al was prepared on a glass substrate via simple non-alkoxide sol-gel spin coating. For a fixed F concentration, the addition of Al co-dopant was shown to reduce the resistivity mainly due to an increase in electrical carrier density compared with ZnO doped with F only, especially after the second post-heat-treatment in a reducing environment. There was no effective positive contribution to the reduction in resistivity due to the mobility enhancement by the addition of Al co-dopant. Optical transmittance of the ZnO thin film co-doped with F and Al in the visible light domain was shown to be higher than that of the ZnO thin film doped with F only.

Insect Cell Culture for Recombinant $\beta$-galactosidase Production Using a Spin-filter Bioreactor

  • Chung, In-Sik;Kim, Hak-Ryul;Lee, Ki-Woong;Kim, Tae-Yong;Oh, Jai-Hyn;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.200-203
    • /
    • 1994
  • Spodoptera frugiperda IPLB-SF-21-AE cells were cultivated in a spin-filter bioreactor with continuous perfusion for the recombinant $\beta$-galactosidase production. At the perfusion rate of 0.06 $hr^{-1}$, the maximum cell density of insect cells in this bioreactor system reached 3.5$\times$$l0^6$ viable cells/ml using the Grace media containing 5% FBS and 0.3% Pluronic F-68. The recombinant $\beta$-galactosidase production of 8, 100 units per reactor volume was also achieved at this perfusion rate.

  • PDF

Spin-polarized energy-gap opening in asymmetric bilayer graphene nanoribbons

  • Kim, Gyu-Bong;Ji, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.442-442
    • /
    • 2011
  • Electronic and magnetic properties of bilayer zigzag graphene nanoribbon (bZGNR) are studied using pseudopotential density functional method. The edge atoms in the top and bottom layers of bZGNR make a weak hybridization, which leads to electronic structures different from monolayer ZGNR. For asymmetric bZGNR, where the top and bottom layers have different widths, one edge is pinched by the interlayer bonding and the other sustains antiferromagnetic ordering. A small amount of charge transfer occurs from narrower to wider layer, producing spin-polarized electron and hole pockets. External electric field produces asymmetric energy-gap opening for each spin component, inducing half-metallicity in bZGNR.

  • PDF

Current-Driven Domain-Wall Depinning in Pt/CoFe/Pt Nanowires with Perpendicular Magnetic Anisotropy

  • Kim, Kab-Jin;Lee, Jae-Chul;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.101-103
    • /
    • 2009
  • The spin transfer torque efficiency was determined experimentally by observing the current-driven domainwall depinning of Pt/CoFe/Pt nanowires with perpendicular magnetic anisotropy. The depinning time was exponentially proportional to the applied magnetic field, and was well explained by the Neel-Brown formula. The depinning time and threshold magnetic field were varied considerably by injecting current into the nanowire. The spin transfer torque efficiency was estimated to be $(7.2{\pm}0.9){\times}10^{-15}Tm^2$/A from the linear dependence of the threshold current density with respect to the applied magnetic field.

Sol-gel Spin-coating of ZnO Co-doped with (F, Ga) as A Transparent Conducting Thin Film ((F, Ga) 코도핑된 ZnO 투명 전도 박막의 솔-젤 제조와 특성)

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • (F,Ga) co-doped ZnO thin film on glass substrate was fabricated via a simple non-alkoxide sol-gel spin-coating. Contrary to the F single doped ZnO thin film, the (F,Ga) co-doped thin film showed a significant reduce in electrical resistivity after a second post-heat-treatment in reducing environment. The resulting decrease in electrical resistivity with Ga co-doping is considered to be resulted from the increases both carrier density and mobility. The optical transmittance of the (F,Ga) co-doped thin film in the visible range showed higher transmittance with Ga co-doping compared with F single doped ZnO thin film.

Magnetic Properties of Cu-doped AlN Semiconductor (AlN 반도체와 Cu의 도핑 농도에 대한 자성)

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2010
  • First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of AlN doped with a Cu concentration of 6.25%-18.75%. The ferromagnetic state is more energetically favorable state than the antiferromagnetic state or the nonmagnetic state. For $Al_{0.9375}Cu_{0.0625}N$, a global magnetic moment of 1.26 mB per supercell, with a localized magnetic moment of 0.75 $m_B$ per Cu atom is found. The magnetic moment is reduced due to an increase in the number of Cu atoms occupying adjacent cation lattice position. For $Al_{0.8125}Cu_{0.1875}N$, the magnetism of the supercell disappears by the interaction of the neighboring Cu atoms. The nonmagnetic to ferromagnetic phase transition is found to occur at this Cu concentration. The range of concentrations that are spin-polarized should be restricted within very narrow.