• 제목/요약/키워드: Spin density

검색결과 343건 처리시간 0.028초

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

고속 Spin Echo 자기 공명 영상법에서 두 가지 $T_E$ 영상을 얻기 위한 새로운 방법 (A New Technique or Dual $T_E$ Images Acquisition in Fast Spin Echo MR Imaging)

  • 조민형;이수열;문치웅;조현화;이완
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.294-298
    • /
    • 1997
  • In the magnetic resonance imaging, the fast spin echo imaging technique is a widely used clinical imaging method, since its scanning time is much shorter than the conventional spin echo imaging and it gives the almost same image quality. However, the fast spin echo technique has two times longer imaging time or the dual echo acquisition which can obtain a spin density image and a $T_2$-weighted image simultaneously. To overcome such a drawback, this paper proposes a new fast dual echo imaging technique which can give the same quality images at the single echo imaging time. The proposed technique reduces the imaging time by overlapping most of echo train data for each image reconstruction. In order to verify its validity and usability the human head experimental results which were obtained at the 0.3T permanent MRI system are presented.

  • PDF

전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산 (The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters)

  • 박기택
    • 한국자기학회지
    • /
    • 제21권1호
    • /
    • pp.1-4
    • /
    • 2011
  • 정육면체 전이금속 산화물 FeO, MnO의 자기적 상호작용을 제1원리의 범밀도함수법을 이용하여 계산하였다. 그 결과, 모두 초교환작용으로 인해 반강자성적 상호작용이 가장 낮은 에너지를 가지고 있었다. 자기이방성은 반강자성 스핀 배열의 FeO 클러스터에서만 발견되었다. 그 원인은 <111> 방향으로 각운동량을 가지는 3d down-spin 전자의 스핀-궤도 결합에 기인하였다.

First Principles Study of spin polarization in Fe-doped monolayer C2N-h2D

  • Lee, Sang Yoon;Jeong, Geumbi
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.336-338
    • /
    • 2016
  • Recent multifunctional two-dimensional material research has triggered huge interests in various modifications for substitution of atoms. Instead of novel metals used as the most popular catalysts, nonprecious transition metals are promising candidates for efficient oxidation-reduction transfers. The recent discovery of $Co@C_2N$ has an alternate possiblity as catalysts for the ORR(Oxygen Reduction Reaction) in DSSc(Dye Sensitized Solar Cell) and OER(Oxygen evolution cobalt oxides). Here we report spin-polarized DFT calculations of the structure doped Iron that is one of ferromagnetism atoms like Co to provide a basic desciption of the ferromagnetism of the elemental metals. The spin-density-funtional results present the most stable state energetically is when having pairwise up/down spin.

  • PDF

초고집적소자의 층간절연막용 polysilazane계 spin on glass (SOG)에 관한 연구 (A study on the spin on glass (SOG) from polysilazane resin for the premetal dielectric (PMD) layer of sub-quarter micron devices)

  • 나사균;정석철;이재관;김진우;홍정의;이원준
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.69-75
    • /
    • 2000
  • We have investigated the feasibility of spin on glass (SOG) film from polysilazane-type resin as a premetal dielectric (PMD) layer of the next-generation ultra-large scale integrated (ULSI) devices. A commercial polysilazane resin and a polysilazane-type resin with oxidizing agent were spin-coated and cured to form SOG films. In order to study the effect of oxidizing agent and annealing, the SOG films were characterized as cured and after annealing at $400^{\circ}C$ to $900^{\circ}C$. the density and the resistance against wet chemical of the SOG films were improved by the addition of oxidizing agent, because oxidizing agent enhanced the conversion from polysilazane polymer to $SiO_2$. The hole profile issue associated with insufficient curing of polysilazane in narrow gaps was also resolved by oxidizing agent, while the gapfill capability of SOG was not deteriorated by oxidizing agent.

  • PDF

Fluorine-Induced Local Magnetic Moment in Graphene: A hybrid DFT study

  • 김현중;조준형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.127.1-127.1
    • /
    • 2013
  • Recent experimental evidence that fluorinated graphene creates local magnetic moments around F adatoms has not been supported by semilocal density-functional theory (DFT) calculations where the adsorption of an F adatom induces no magnetic moment in graphene. Here, we show that such an incorrect prediction of the nonmagnetic ground state is due to the self-interaction error inherent in semilocal exchange-correlation functionals. The present hybrid DFT calculation for an F adatom on graphene predicts not only a spin-polarized ground state with a spin moment of ${\sim}1{\mu}_B$, but also a long-range spin polarization caused by the bipartite nature of the graphene lattice as well as the induced spin polarization of the graphene states. The results provide support for the experimental observations of local magnetic moments in fluorinated graphene.

  • PDF

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제54권3호
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성 (Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method)

  • 김현주;이동윤;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.