• 제목/요약/키워드: Spider chart

검색결과 2건 처리시간 0.017초

근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류 (Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning)

  • 이성문;피승훈;한승호;조용운;오도창
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가 (Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition)

  • 안성무;이건희;김세진;배소정;이현주;오도창;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.