• 제목/요약/키워드: Sphingomyelinase inhibitor

검색결과 11건 처리시간 0.025초

Isolation of Sphinin, an Inhibitor of Sphingomyelinase, from Streptomyces sp. F50970

  • LIM, SI-KYU;WAN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.655-660
    • /
    • 1999
  • Sphingomyelinase (SMase EC:3.l.4.l2) has been suggested to play important roles in the cell cycle, differentiation, apoptosis, inflammation, and the regulation of eukaryotic stress responses. SMase inhibitors may be a powerful tool to elucidate and regulate these cellular responses in which SMase involves. We first isolated an SMase inhibitor, named sphinin, from a strain of soil actinomycetes, F50970. Sphinin inhibited Mg/sup 2+/ -dependent neutral SMase from chicken embryo at 1.2 ㎍/㎖ of IC/sub 50/ Sphinin also inhibited acidic SMase, but it had no inhibitory activity on PI-PLC and PC-PLC, suggesting that sphinin is a specific inhibitor of SMase. The strain F50970 was identified as a Streptomyces sp. by its spiral spore chain, LL-diaminopimelic acid, menaquinone patterns of MK-9 (H'6) and MK-9 (H'8), FA-2c type of fatty acid pattern, and other morphological, physiological, and cultural characteristics.

  • PDF

Optimal Conditions for the Production of Sphimin, a Sphingomyelinase Inhibitor from Steptomyces sp. F50970

  • Sipkyu Lim;Park, Wan
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.5-8
    • /
    • 1999
  • We isolated a sphingonyelinase (SMase) inhibitor, which would be a potential reagent to regulate cell proliferation, oncogenesis, and inflammation, from a strain of Streptomyces sp.. In this paper, we report the optimal conditions for the production of SMase inhibitor, designed as sphinin, from Streptomyces sp. F50970. The optimal carbon and nitrogen source were 1% soluble starch and 0.05%-0.15% trypton. Most of monosaccharides and high concentration of soluble starch above 1.0% caused falling of pH and sphinin production. Zn2+, Cu2+, Fe2+, Mn2+, and Co2+inhibited cell growth and the production of sphinin. Inorganic phosphate promoted the sphinin production. Optimal initial pH for the production of sphinin was 7.5-8.0. Addition of CaCO3 to the medium resulted in an increase of inhibitor production. Based on these results, we designed a fermentation medium for the production of a SMase inhibitor, sphinin, from Streptomyces sp. F50970.

Identification of Three Competitive Inhibitors for Membrane­Associated, $Mg^{2+}-Dependent$ and Neutral 60 kDa Sphingomyelinase Activity

  • Kim Seok Kyun;Jung Sang Mi;Ahn Kyong Hoon;Jeon Hyung Jun;Lee Dong Hun;Jung Kwang Mook;Jung Sung Yun;Kim Dae Kyong
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.923-929
    • /
    • 2005
  • Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of $11.9 {\mu}g/mL,\;9.4{\mu}g/mL,\;and\;12.9{\mu}g/mL$, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.

Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise

  • Lee, Young-Ik;Leem, Yea-Hyun
    • 운동영양학회지
    • /
    • 제23권2호
    • /
    • pp.1-6
    • /
    • 2019
  • [Purpose] Strenuous exercise often induces skeletal muscle damage, which results in impaired performance. Sphingolipid metabolism contributes to various cellular processes, including apoptosis, stress response, and inflammation. However, the relationship between exercise-induced muscle damage and ceramide (a key component of sphingolipid metabolism), is rarely studied. The present study aimed to explore the regulatory role of sphingolipid metabolism in exercise-induced muscle damage. [Methods] Mice were subjected to strenuous exercise by treadmill running with gradual increase in intensity. The blood and gastrocnemius muscles (white and red portion) were collected immediately after and 24 h post exercise. For 3 days, imipramine was intraperitoneally injected 1 h prior to treadmill running. [Results] Interleukin 6 (IL-6) and serum creatine kinase (CK) levels were enhanced immediately after and 24 h post exercise (relative to those of resting), respectively. Acidic sphingomyelinase (A-SMase) protein expression in gastrocnemius muscles was significantly augmented by exercise, unlike, serine palmitoyltransferase-1 (SPT-1) and neutral sphingomyelinase (N-SMase) expressions. Furthermore, imipramine (a selective A-SMase inhibitor) treatment reduced the exercise-induced CK and IL-6 elevations, along with a decrease in cleaved caspase-3 (Cas-3) of gastrocnemius muscles. [Conclusion] We found the crucial role of A-SMase in exercise-induced muscle damage.

Inhibition of a Neutral Form of Sphingomyelinase by Alkylthioureido-l,3-propandiols, KY353X Series

  • Jung, Sang-Mi;Jeong, Eui-Man;Jo, Dong-Hwawn;Chin, Mi-Reyoung;Jun, Hyung-Jin;Kim, Yong-Hyun;Jeon, Hyung-Jun;Lee, Dong-Hun;Park, Mi-Ja;Oh, Mi-Jung;Yim, Chul-Bu;Kim, Dae-Kyong
    • Biomolecules & Therapeutics
    • /
    • 제11권3호
    • /
    • pp.169-173
    • /
    • 2003
  • Alkylthioureido-1,3-propandiols (KY353X series) were synthesized and evaluated as inhibitors for neutral sphingomyelinase (N-SMase). To examine whether KY353X series inhibit N-SMase, we purified the N-SMase from bovine brain. The N-SMase was partially purified by sequential chromatographies of DEAE-Cellulose anionic exchange and phenyl-5PW hydrophobic HPLC. These seqeuntial procedures for N-SMase resulted in a 67-fold purification and excluded other isoforms of SMase. Based on in vitro assay, KY353X series inhibited N-SMase activity in time, concentration-dependent manners and completely inactivated N-SMase at 50 $\mu$M. In particular, KY3535 and KY3536 inhibited more effectively than the others. To further determine the .inhibitory pattern, a Dixon plot was constructed, to showing that the inhibition by KY3535 and KY3536 were competitive. The inhibition constant (Ki) of KY3535 and KY3536 was 1.7 $\mu$M and 2.5$\mu$M in 100 mM Tris-HCl buffer, pH 7.0, respectively.

Ceramide is Involved in $MPP^+-induced$ Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Hye-Sook;Lee, Young-Jae;Joo, Wan-Seok;Maeng, Sung-Ho;Im, Hye-In;Park, Chan-Woong;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권6호
    • /
    • pp.281-286
    • /
    • 2002
  • To understand the cytotoxic mechanism of $MPP^+,$ we examined the involvement of ceramide in $MPP^+-induced$ cytotoxicity to human neuroblastoma SH-SY5Y cells. When SH-SY5Y cells were exposed to $MPP^+,\;MPP^+$ induced dose-dependent cytotoxicity accompanied by 2-fold elevation of intracellular ceramide levels in SH-SY5Y cells. Three methods were used to test the hypothesis that the elevated intracellular ceramide is related to $MPP^+-induced$ cytotoxicity: $C_2-ceramide$ was directly applied to cells, sphingomyelinase (SMase) was exogenously added, and oleoylethanolamine (OE) was used to inhibit degradation of ceramide. Furthermore, inhibition of ceramide-activated protein phosphatase (CAPP), the effector of ceramide, using okadaic acid (OA) attenuated cell death but treatment of fumonisin $B_1,$ the ceramide synthase inhibitor, did not alter the cytotoxic effect of $MPP^+.$ Based on these, we suggest that the elevation of intracellular ceramide is one of the important mediators in $MPP^+-induced$ cell death.

Protection of LLC-PK1 Cells Against Hydrogen Peroxide­Induced Cell Death by Modulation of Ceramide Level

  • Yoo Jae Myung;Lee Youn Sun;Choi Heon Kyo;Lee Yong Moon;Hong Jin Tae;Yun Yeo Pyo;Oh Seik Wan;Yoo Hwan Soo
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.311-318
    • /
    • 2005
  • Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC­PK1 cells were treated with H$_2$O$_2$ in the absence of serum to induce cell death. Subsequent to exposure to H$_2$O$_2$, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H202-treated control cells, it was observed that 0.5 $\mu$M of desipramine and 25 $\mu$M of NAC exhibited about 90 and $95\%$ of cytoprotection, respectively, against H$_2$O$_2$-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and $3\%$ respectively, when compared to $71\%$ in H$_2$O$_2$-exposed cells. Cellular glutathione level in 500 $\mu$M H202-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H$_2$O$_2$-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H$_2$O$_2$-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

Impact of imatinib administration on the mouse ovarian follicle count and levels of intra-ovarian proteins related to follicular quality

  • Kim, Se Jeong;Kim, Tae Eun;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권2호
    • /
    • pp.93-100
    • /
    • 2022
  • Objective: The impact of imatinib, a tyrosine kinase inhibitor, on ovarian follicles and several proteins related to follicular function and apoptosis was investigated in mice. Methods: Saline, cyclophosphamide (Cp; 50 or 75 mg/kg), or imatinib (7.5 or 15 mg/kg) was injected once intraperitoneally into female B6D2F1 mice (18 mice in each group). In multiple ovarian sections, the number of various types of follicles and the proportion of good-quality (G1) follicles were counted. The levels of six proteins (anti-Müllerian hormone [AMH], BCL-xL, BAX, acid sphingomyelinase [A-SMase], caspase-3, and α-smooth muscle actin [α-SMA]) within the whole ovaries were quantified using Western blots. Results: Compared to the saline group, a significant reduction of the primordial follicle count was observed in the group treated with imatinib 7.5 and 15 mg/kg, as well as in the group treated with Cp 75 mg/kg. Administration of Cp significantly decreased the proportion of G1 primordial follicles, but administration of imatinib did not. No differences in the AMH, anti-apoptotic BCLX-L, pro-apoptotic BAX, and A-SMase levels in the ovarian tissues were observed among the five groups. However, caspase-3 and α-SMA levels were significantly higher in the imatinib and Cp groups than in the saline group. Conclusion: The administration of imatinib to mice significantly reduced the primordial follicle count and increased the protein levels of caspase-3 and α-SMA. Our findings suggest that imatinib potentially exerts ovarian toxicity via apoptotic processes, similarly to Cp.

Effect of Cellular Zinc on the Regulation of C2-ceramide Induced Apoptosis in Mammary Epithelial and Macrophage Cell Lines

  • Han, S.E.;Lee, H.G.;Yun, C.H.;Hong, Z.S.;Kim, S.H.;Kang, S.K.;Kim, S.H.;Cho, J.S.;Ha, S.H.;Choi, YunJaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권12호
    • /
    • pp.1741-1745
    • /
    • 2005
  • Zinc is a trace element that is associated with a stimulation of immune function and regulation of ion balance for livestock production. In this study, the effect of zinc as inhibitor to apoptosis-induced cells was examined in vitro using mammary epithelial cell line, HC11 and macrophage cell line, NCTC3749. Cell viability, measured by MTT assay, indicated that 10 g/ml of zinc had a negative impact on cellular activity and 50 ng/ml was chosen for further testing. Apoptosis was induced in cells treated with C2-ceramide in serum-free media. DNA fragmentation and gene expression of acidic sphingomyelinase (a gene responsible for the progress of apoptosis) were distinctively low in zinc treated cells compared with those in non-treated controls. In conclusion, zinc is involved in the regulation of cell proliferation and apoptosis in mammary epithelial cells and macrophages.