• Title/Summary/Keyword: Spheriodization

Search Result 4, Processing Time 0.015 seconds

Effects of Carbides on Hydrogen-induced Delayed Fracture for the Energy Saving Wire (ESW) (선조철강의 탄화물에 따른 수소지연파괴 거동 분석)

  • Lee, J.B.;Kang, N.H.;Park, J.T.;Ahn, S.T.;Park, Y.D.;Cho, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.139-141
    • /
    • 2009
  • This study analyzed the effect of the microstructure and alloying element on hydrogen-induced delayed fracture properties for the Energy Saving Wire (ESW) developed recently. Specimens were produced with a diameter 6.5mm post to the deformation (0, 10, 20 and 30%), followed by injecting the hydrogen. The experimental results by using GAS chromatography showed that the more hydrogen was emitted for high-carbon steel (0.45%C steel and 0.35%C steel) than low-carbon steel(0.2%C-Cr steel and 0.2%C-Cr-Mo steel). And, 0.45%C steel, 0.35%C steel and 0.2%C-Cr-Mo steel exhibited the crack for 30% deformed specimen. The hydrogen emitted was analyzed with the amount, the spheroidization, and the size of the carbides.

  • PDF

Preanalysis of Hydrogen-induced Delayed Fracture for High Strength Prehent-Treated Steel (고강도 신조질강 냉간단조품의 지연파괴 메커니즘 분석)

  • Lee, J.B.;Kang, N.H.;Park, J.T.;Ahn, S.T.;Park, Y.D.;Choi, I.D.;Cho, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.38-39
    • /
    • 2009
  • The precipitate percentage and the spheroidization percentage were analyzed as a function of the tempering temperatures and the alloying elements for high strength preheat-treated steel. The optimum temperature of tempering produced the small precipitates of nano size. The precipitate percentage and the spheroidization percentage were increased with the tempering temperatures. The size of precipitate decreased as the spheroidization of carbon precipitates progressed. The alloying elements such as Cr and Mo reduced the sphereidization temperature.

  • PDF

Effect of Initial Microstructure, Cold Rolling and Temperature on the Spheroidization Rate of Cementite in High Carbon Steel (고탄소강의 구상화속도에 미치는 초기 미세조직, 냉간압연 및 온도의 영향)

  • Kim, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.158-164
    • /
    • 2013
  • The spheroidization behavior of cementite in a SK85 high carbon steel was investigated in this study. Fine and coarse pearlite microstructures were obtained by appropriate heat treatments according to the TTT diagram of SK85 high carbon steel. Hot rolled plates of SK85 steel were austenitized at $800^{\circ}C$ for 2 hrs and then put directly into a salt bath at either $570^{\circ}C$ or $670^{\circ}C$ to obtain a fine pearlite (FP) structure and a coarse pearlite (CP) structure, respectively. Cold rolling was subsequently conducted on those specimens with reduction ratios from 0.2 to 0.4. Spheroidization heat treatments were conducted at the subcritical temperatures of 600 and $720^{\circ}C$ for 1 to 32 hrs to elucidate the effect of initial microstructures, heat treatment temperature, and cold reduction ratios on the cementite spheroidization rate. Spheroidization proceeded with fragmentation of cementite plates, spheroidization of the cementite platelets, and coarsening consecutively. Mechanical fragmentation of cementite by cold rolling expedited the rate of spheroidization. The spheroidization rate of FP was much more rapid than that of CP and the spheriodization rate increased with increases in the cold reduction ratio.

A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process (알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구)

  • Bae, Won-Byong;Kang, Chung-Yun;Lee, Young-Seok;Lee, Sung-Mo;Hong, Chang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF