• Title/Summary/Keyword: Spherical wheel

Search Result 38, Processing Time 0.026 seconds

A study on the development of ultra-precision grinding system and manufacturing properties for aspheric surface micro lens (비구면 마이크로 렌즈 가공을 위한 초정밀 연삭 시스템 개발 및 가공 특성에 관한 연구)

  • Baek S.Y.;Lee H.D.;Kim S.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.15-18
    • /
    • 2005
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, The development of ultra-precision grinding system and manufacturing properties for the aspheric surface micro lens are described. In the work reported in this paper, and ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the surface roughness and profiles accuracy. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $3\;{\mu}m$ P-V and a surface roughness of $0.1\;{\mu}m\;R_{max}$.

  • PDF

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

Microparticulation/Air Classification of Rice Bran: Characteristics and Application (초미세분쇄/공기분급을 이용한 탈지미강 분획의 특성과 응용)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.769-774
    • /
    • 1993
  • Defatted rice bran was microparticulated using fluidized bed opposed jet mill and air-classified at different air classifying wheel speed (ACWS) in Turboplex classifier. The median particle size and the standard deviation decreased, and concomitantly the specific surface area increased generally with increasing ACWS. The protein, fat and ash contents of the recovered rice bran increased with ACWS. The contents of minerals; magnesium, zinc, iron and manganese; increased positively with ACWS. The phytic acid content, however, was slightly higher at middle ACWS. The dietary fiber content was highest in the ACWS 15,000 rpm fraction showing 31.47%. Higher ACWS resulted in lighter colored powder. The water holding capacity (WHC) showed the maximum value at ACWS 12,000 rpm and decreased with increasing ACWS, while the oil holding capacity (OHC) increased with ACWS. The rheological property of the microparticulated rice bran/water suspension fitted to the linear model. The yield stress and viscosity of the suspension increased with ACWS. The shape of microparticulated rice bran at ACWS 21,000 rpm was spherical, and the median particle size was $3.7{\mu}m$. When cake was prepared with substitution of microparticulated rice bran at 5%, the cake height and volume increased remarkably.

  • PDF

Development of the Aspherical Lens Polishing System with MR Fluid and Analysis of the Basic Polishing Characteristic of MR Polishing System (MR Fluid를 이용한 비구면 렌즈 연마 시스템 개발 및 기초 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.92-99
    • /
    • 2014
  • An aspherical lens, which resolves several problems with a spherical lens,typically serves asa key part of an optical system. Generally, an aspherical lens is fabricated using a diamond turning machine or by mean of injection molding. However, residual stress and/or tool marks can arise when using a commercial fabricating method such as DTM or injection molding. A polishing process, thus, is commonly used to obtain a high-precision aspherical lens. In this study, a polishing method using MR fluid was applied to minimize several problems, in this case residual stress and the creation of tool marks, during the cutting process. The MR polishing system was developed to polish aspherical lenses. A series of experiments were performed to obtain a very fine surface roughness. PMMA (the lens material for molding) was used as a workpiece, and the gap size, magnetic field intensity, wheel speed and feed rate were selected as the parameters in this study. Finally, a very fine surface roughness of Ra=2.12nm was obtained after MR polishing.

OPTO-MECHANICAL DESIGN OF THE KASINICS (KASINICS의 광기계부 설계)

  • Yuk, I.S.;Lee, S.L.;Jin, H.;Seon, K.I.;Pak, S.;Lee, D.H.;Nam, U.W.;Moon, B.K.;Cha, S.M.;Han, J.Y.;Kyeong, J.M.;Kim, K.H.;Yang, J.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.143-149
    • /
    • 2005
  • KASI (Korea Astronomy and Space Science Institute) is developing the near-infrared camera system named KASINICS (KASI Near-Infrared Camera System) which will be installed at the 60cm f/13.5 Ritchey-Chretien telescope of the Sobaeksan Optical Astronomy Observatory (SOAO). The camera system is optimized for JHKL bands and has a 6 arcmin FOV. The optical system consists of two spherical mirrors and a 8-position filter wheel. With the exception for the dewar window, all optical elements are cooled inside cryogenic dewar. Since the Offner system is adopted to prevent thermal noises from outside of the telescope primary mirror, the secondary mirror of the Offner system acts as a cold Lyot stop. The optical performance does not change by temperature variations because the Aluminum mirrors contract and expand homogeneously with its mount. We finished the design and fabrication of the optical parts and are now aligning the optical system. We plan to have a test observation on 2006 January.

Focal Reducer for McDonald Otto Struve Telescope

  • Lim, Ju-Hee;Kim, Young-Ju;Park, Won-Kee;Kim, Jin-Young;Chang, Seung-Hyuk;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2010
  • The CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera optimized for observation of high redshift objects. It is going to be attached to the cassegrain focus of 2.1m telescope at McDonald Observatory, USA. We are making a focal reducer for CQUEAN to secure a larger field of view. The focal reducer is composed of four spherical lens, and it reduces the focal length of telescope by one third. We designed the lens configuration, performed tolerance analysis, and estimated the optical performance with ZEMAX. The differences in optical performace with/without filters were also investigated. The result from ZEMAX shows that the system has ample margin of errors for median seeing of 1.2" at McDonald observatory. Even with aberration and alignment tolerance, the performance is better than the original requirement. The lenses are now being made, and the lens barrel and an adapter for assembly of the Andor CCD camera and the filter wheel is now under designing process. We expect that the manufacturing of the focal reducer system as well as its optical test will be finished by April 2010.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG (홍대용 통천의의 혼천의 연구)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.