• Title/Summary/Keyword: Spherical shape

Search Result 882, Processing Time 0.031 seconds

Some 3-Level Spherical Designs for Response Surface Experiments: Designs Constructed for the Radius of the Spherical Experimental Region to Vary with the Number of Factors (반응표면실험을 위한 3-수준 구형(球形) 실험설계: 구형 실험지역의 반경이 요인 수에 따라 변화하도록 구축된 설계)

  • 이우선;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.24-40
    • /
    • 2001
  • Response surface designs can be classified, according to the shape of the experimental region, into spherical designs and cuboidal designs. Among the central composite design(CCD)s and the Box-Behnken design(BBD)s that are popular in practice, when the number of factors is k, spherical designs are tile CCDs with the axial value being $\sqrt{\textit{k}}$ and the BBDs, and cuboidal designs are the CCDs with the axial value being 1. With the CCDs having $\sqrt{\textit{k}}$ as the axial value, the radius of the experimental region varies with number of factors, but these designs are the 5-level designs. With the BBDs that are 3-level designs, the radius of the experimental region does not vary with the number of factors. In this article, we propose tile 3-level spherical designs which are constructed so that tile radius of the experimental region varies with the number of factors.

  • PDF

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots

  • Yang, Hanyi;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.

The Effect of Particle Shape and Size on the Settling Characteristics in Suspension (서스펜션 중에서 입자의 형태와 크기가 침강특성에 미치는 영향)

  • Lee, Ji-Jong
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.927-933
    • /
    • 1994
  • The effect of particle shape and size on the settling characteristics in monodisperse suspensions of non-spherical particles was investigated. The slope index n values which was obtained from the plot of logarithm of settling rate vs. voidage were increased with the decrease of particle size because different amount of liquid could be adsorbed on irregular particle shape and/or size at same volume concentration. From the experimental results, an equation, $n_{i}=n(a+b/d_{v})$ where n is value of spherical particles, dv is minimum particle diameter and a, b are constants for characteristic of particles.

  • PDF

Fabrication of Size- and Shape- Controlled Gold Particles using Wet Chemical Process (환원 석출법을 이용한 모양과 크기가 제어된 금 입자의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • Shape and size controlled synthesis of gold particles has been studied by using wet-chemical method. When ${AuCl_4}^-$ in aqueous $HAuCl_4$ precursor was reduced using $Na_2SO_3$ as a reducing agent, mixtures of spherical, triangular and hexagonal particles were prepared in a few minutes. It was found that the shape selective oxidative etching by ${AuCl_4}^-\;+\;Cl^-$ anions and crystal growth took place simultaneously. As the ${AuCl_4}^-$ and $Cl^-$ concentration increased, yields of large triangular and hexagonal plate type particles increased, while the spherical particles decreased in most cases. Possible etching and growth mechanisms are discussed.

Effect of shape and surface properties of hydrothermaled silica particles in chemical mechanical planarization of oxide film (실리카 입자의 형상과 표면 특성이 산화막 CMP에 미치는 영향)

  • Jeong, Jeong-Hwan;Lim, Hyung-Mi;Kim, Dae-Sung;Paik, Un-Gyu;Lee, Seung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.161-161
    • /
    • 2008
  • The oxide film of silicon wafer has been mainly polished by fumed silica, colloidal silica or ceria slurry. Because colloidal silica slurry is uniform and highly dispersed composed of spherical shape particles, by which the oxide film polished remains to be less scratched in finishing polishing process. Even though the uniformity and spherical shape is advantage for reducing the scratch, it may also be the factor to decrease the removal rate. We have studied the correlation of silica abrasive particles and CMP characteristics by varying pH, down force, and table rotation rate in polishing. It was found that the CMP polishing is dependent on the morphology, aggregation, and the surface property of the silica particles.

  • PDF

Influence of the Morphology and the Particle Size on the Processing of Bronze 90/10 Powders by Metal Injection Moulding (MIM)

  • Contreras, Jose M.;Jimenez-Morales, Antonia;Torralba, Jose M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.503-504
    • /
    • 2006
  • The MIM technology is an alternative process for fabricating near net shape components that usually uses gas atomised powders with small size $(<\;20\;{\mu}m)$ and spherical shape. In this work, the possibility of changing partially or totally spherical powder by an irregular and/or coarse one that is cheaper than the former was investigated. In this way, different bronze 90/10 components were fabricated by mixing three different types of powder, gas and water atomised with different particle sizes, in order to evaluate how the particle shape and size affect the MIM process.

  • PDF

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

The synthesis of green-emitting $GdPO_4$:Tb phosphor particles by the spray pyrolysis for PDP application

  • Lee, Kyo-Kwang;Kang, Yun-Chan;Jung, Kyeong-Youl;Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.807-810
    • /
    • 2002
  • $GdPO_4$:Tb phosphor particles with spherical shape and high photoluminescence were prepared by spray pyrolysis. The brightness of prepared $GdPO_4$:Tb under the vacuum ultraviolet(VUV) illumination was comparable with that of the commercial $Zn_2SiO_4$:Mn phosphor particles. The photoluminescence spectra of $GdPO_4$:Tb phosphor particles had maximum peak at 547 nm, and the sharp peaks at 480 nm, 580 nm, and 620 nm. The spherical morphology of prepared $GdPO_4$:Tb particles was completely maintained even after the posttreatment up to 1100 $^{\circ}C$. When the posttreatment temperature was over 1100 $^{\circ}C$, the particles did not have the spherical shape anymore. The average particle size of $GdPO_4$:Tb phosphor particles prepared by using $(NH_4)_2HPO_4$ was changed from 0.5 to 1.9 ${\mu}m$ and its effect on the PL intensity was investigated. It was found that the optimized $GdPO_4$:Tb particles have a good excitation spectrum comparable to that of the commercial $Zn_2SiO_4$:Mn phosphor particles under the VUV illumination from 140 to 220 nm. We concluded that the $GdPO_4$:Tb phosphor particles with spherical shape prepared by spray pyrolysis is a promising candidate for a green-emitting PDP phosphor.

  • PDF

Numerical Study of the Effect of Head Shapes on the Flow Field in a Cylinder of Two-Stroke Engine (헤드 형상에 따른 2행정기관 실린더내의 유동장에 대한 수치해석적 연구)

  • Kang, D.W.;Yang, H.C.;Chae, S.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.48-57
    • /
    • 1994
  • The specific power output and thermal effeciency of any two-stroke engine are dependent on its scavenging behavior. Among the many factors which influence on the scavenging process, the cylinder head shape is one of the important factor. Hence in this study three different type models of cylinder head shape which are the cylindrical, the spherical and the arbitrary shape are studied to show the effects of the turbulent scavenging process in the cylinder with one inlet port, two side ports and one exhaust port. A modified version of KIVA-II which strip out of or add planes of cells across the mesh above the piston for flow simulation of two-stroke engine is used. The $k-{\varepsilon}$ turbulent model is used. The results show that the flow in a two-stroke engine cylinder of the spherical head shape among the three different type model is a desirable for efficient scavenging.

  • PDF