• Title/Summary/Keyword: Spherical robot

Search Result 44, Processing Time 0.017 seconds

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

A theoretical Study of robot artificial joint with spherical- or hemispherical type permanent magnet (구형 또는 반구형 영구자석을 이용한 인공관절에 대한 연구)

  • Kim, In-Ku;Hwang, In-Sung;Goh, Chang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.37-38
    • /
    • 2007
  • 로봇의 메커니즘 중 가장 어렵고 필수 구성 수단인 부품으로 여겨지는 것은 관절이다. 이에 관해서 오래 전부터 많은 연구가 수행되고 있다. 본 논문은 이 로봇관절에 대한 것으로 축에 연결된 구형 또는 반구형 영구자석을 이용하여 관절의 자유도를 늘림과 동시에 응답속도를 빠르게 하기 위한 장치에 대한 연구로서 영구 자석과 고정자 사이에 공극을 두고 서로 수직으로 교차하도록 고정자 권선을 배치하고 권선에 전류를 흘려서 관절을 움직이게 하는 방법이다. 구형 또는 반구형자석이 장착된 축과 반구형 쉘(shell) 내부에 교차하는 두 개의 고정자 권선이 장착된 축으로 구성된 것을 특징으로 한다.

  • PDF

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.