• 제목/요약/키워드: Spherical particle formation

검색결과 83건 처리시간 0.024초

대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석 (Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame)

  • 정재인;황준영;이방원;최만수;정석호
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.

에멀전증발법으로 제조된 미세 산화텅스텐 분말의 특성 (Characteristics of Fine WO3 Powders Prepared by Emulsion Evaporation)

  • 안종관;신창훈;이만승;이충효
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.89-95
    • /
    • 2002
  • Spherical fine powders of tungsten oxide powders were prepared by the emulsion evaporation method. The characteristics of the powders prepared were examined by means of TGA, X-ray diffraction, SEM and image analysis. The emulsions were prepared by fast mixing of aqueous phase containing tugsten and the organic phase which composed of kerosene, surfactant, and paraffin oil. Precursors were made by evaporating the emulsionin the kerosene bath at $160^{\circ}C$, and then calcined at $650^{\circ}C$ in order to produce tungsten oxide powders. The average particle size of the tungsten oxide powders was $0.5\mutextrm{m}$ and their shapes were spherical at the both case of w/o and o/w type emulsions. As the HLB value of the surfactant increased and the concentration of tungsten ions decreased the mean particle siqe of tungsten oxide powders decreased whereas agglomerationsize increased. The optimum concentration of Span 80 was 8 percent by volume, and the optimum stirring speed in the emulsion formation was 5000 rpm in order to obtain fine and well dispersed $WO_3$ powders.

급속냉각한 Al-5Cr-2Zr 합금의 시효경화에 미치는 기계적 합금화 처리효과 (Effects of Mechanical Alloying Treatment on Age Hardening Behavior of Rapidly Solidified Al-5Cr-2Zr Alloy)

  • 김완철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.29-35
    • /
    • 1994
  • The microstructual refinement process of Al-5Cr-2Zr alloys mechanical alloying 30h can be divided in five stages ; initial stage, welding predomminance stage, spherical partical formation stage, convolution welding predominance stage, and steady state. The rate of structural of aluminium splats was roughly logarithmic with processing time ; ${\in}$=k/0.78 ln(1+0.0028t). The age hardening in rapidly solidified Al-5Cr-2Zr alloys is ascribed to the coherency and dispersion hardening. Coherency hardening is occurred by matastable cubic Al3Zr precipitates in Al-Cr-Zr alloys. Dispersion hardening after mechanical alloying is attributed to the finely-dispersed $Al_2O_3$ and $Al_4C_3$ in Al-5Cr-2Zr alloys.

  • PDF

Synthesis of spherical phosphors (Y,Gd)$BO_3$:Eu from Precursors in Polymeric Form by Aerosol Pyrolysis

  • Jeoung, Byung-Woo;Yoo, Won-Tae;Hong, Gun-Young;Yoo, Jae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.788-791
    • /
    • 2002
  • The phosphors of high luminous efficiency for PDP application must have high purity, single phase, and dense surface. In this work, the polymeric reaction was applied to preparation of spherical phosphor by aerosol pyrolysis in order to enhance mechanical and optical characteristics. The red phosphor of (Y,Gd)$BO_3$:Eu was prepared from polymeric precursor, in which citric acid and ethylene glycol were used as ion carriers, i.e monomers. For enhancing the luminescence intensity and mechanical characteristics. optimum synthesizing condition were investigated through concentration of monomers, synthetic temperature. doped activator concentrations, and annealing process. The phosphors synthesized with monomers showed quite different morphology from those without monomers. It was observed that polymeric precursor made an effect on particle formation mechanism and status of particles surface. The resultant spherical phosphors show the comparable luminescent properties to the commercial product (product by Nichia co.). Also, they were observed to have the rigid surface.

  • PDF

초음파 분무 열분해 구형 미립자를 이용한 Y-TZP 소결체의 제조 (Y-TZP Sintered with Spherical Fine Powders Prepared by Ultrasonic Spray Pyrolysis)

  • 김복희;이정형
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.575-581
    • /
    • 1995
  • Zr0.94Y0.06O1.97 powder was synthesized by the ultrasonic spray pyrolysis with various concentrations of starting solution and the influence of powder characteristics on sintering behavior was investigated. Powders prepared at 75$0^{\circ}C$ were characterized as narrowly distributed submicron spherical particles, which were crystalline, nonagglomerated, and compositionally homogeneous. The changes in concentration from 0.01 to 01. mol/ι increased mean particle size from 0.24 to 0.38${\mu}{\textrm}{m}$ and decreased the specific surface area from 14.2 to 2.9$m^2$/g. The relative density of the specimen from the powders, prepared with the solution concentration of 0.01 mol/ι, was 98% after sintering for 2 hr at 1,45$0^{\circ}C$ and the monoclinic phase was observed after sintering at 1,55$0^{\circ}C$. As the concentration of starting solution was increased, the formation temperature of monoclinic phase was lowered.

  • PDF

Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조 (Preparation of Pt/C catalyst for PEM fuel cells using polyol process)

  • 오형석;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

나노유체 입자상 모양의 유효 열전도도에의 영향 (The effects of particle shape on the effective thermal conductivity enhancement of nanofluids)

  • 구준모;강용태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2106-2109
    • /
    • 2008
  • Nanofluids have been studied as possible alternatives for heat transfer fluids to improve the efficiency of heat exchangers. There are deviations of measured effective thermal conductivities between research-groups, and the mechanisms of the effective thermal conductivity enhancement of nanofluids are not confirmed yet. In this study, the effects of particle shape on the effective thermal conductivity enhancement are discussed and presented as a possible explanation of the deviations. The particle motion effect is found to be negligible for nanofluids of high aspect ratio cylindrical particles, which is believed to be important for nanofluids of spherical particles, while the percolation network formation and contact resistance play dominant roles in determining the effective thermal conductivity.

  • PDF

초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 합성 및 형성기구 규명 (The synthesis and formation mechanism of the fine $BaTiO_3$ powders by ultrasonic spray pyrolysis)

  • 허화범;신건철
    • 한국결정성장학회지
    • /
    • 제4권2호
    • /
    • pp.178-189
    • /
    • 1994
  • $BaTiO_3$ 미분말은 여러종류의 0.05 M 출발용액으로부터 초음파 분무 열분해법으로 합성하였다. 이때, 유속은 0.5 cm/sec, 저온로는 $300^{\circ}C$, 고온로는$700^{\circ}C$로 고정하였다. 입자의 형성과정은 반응 단계별로 포집된 분말을 SEM으로 직접 관찰하였고 또한, 반응기내에서의 입자의 거동을 이론적으올 고찰하고자 하였다. 순수한 $BaTiO_3$ 미분말은 출발용액이 nitrate aqueous solution인 경우에 합성이 가능하였다. 합성된 미분말은 19.1 nm의 일차입자들로 구성된 porous한 약 $0.42 {mu}m$크기의 구형의 이차임자였다. 형성과정은 건조단계에서 입자의 크기가 감소한 후 열분해 초기단계에서 증가하고 반응이 진행됨에 따라 점차 다시 감소하여 최종 $0.42 {mu}m$의 고화된 입자로 되었고 입도분포는 반응이 진행됨에 따라 점차 넓어졌다. 또한, 반응기내에서 입자들의 이론적 거동은 반응기 중심쪽으로 향하여 진행된다.

  • PDF

Analysis of Particle Rearrangement during Sintering by Micro Focus Computed Tomography $({\mu}CT)$

  • Nothe, M.;Schulze, M.;Grupp, R.;Kieback, B.;Haibel, A.;Banhart, J.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.808-809
    • /
    • 2006
  • The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography $({\mu}CT)$, combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, ${\mu}CT$ analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtained data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.

  • PDF

Hydrodynamic interaction between two cylinders in planar shear flow of viscoelastic fluid

  • Jung, Hyun-Wook;Daejin Won;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.203-207
    • /
    • 2002
  • Particle-particle interaction is of great importance in the study of suspension rheology. In this research we have investigated the hydrodynamic interaction between two identical cylinders in viscoelastic fluids numerically as a model problem for the study of viscoelastic suspension. We confine two neutrally buoyant cylinders between two parallel plates and impose a shear flow. We determine the migration velocity of two cylinders. The result shows that cylinders move toward or away from each other depending upon the initial distance between them and that there is an equilibrium distance between two cylinders in viscoelastic fluids regardless of the initial distance. In the case of Newtonian fluid, there is no relative movement as expected. The results partly explain the chaining phenomena of spherical particles in shear flows of viscoelastic fluids.