• Title/Summary/Keyword: Spherical mechanism

Search Result 143, Processing Time 0.03 seconds

Kinematic Analysis and Implementation of a Spherical 3-Degree-of-Freedom Parallel Mechanism (구형 3자유도 병렬 메커니즘의 기구학 해석 및 구현)

  • Lee, Seok-Hee;Kim, Whee-Kuk;Oh, Se-Min;So, Byung-Rok;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.72-81
    • /
    • 2005
  • A new spherical-type 3-degree-of-freedom parallel mechanism consisting of a two degree-of-freedom parallel module and a serial module is proposed. Two alternative designs for the serial sub-chain are suggested and compared. The first design employs RU joint arrangement for the serial sub chain structure. The second design incorporates a gear chain to drive the distal revolute joint of the serial sub-chain from the base platform of the mechanism. This modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model with respect to three inputs which are located at the base is derived. Thirdly, it is confirmed through simulation that the modified mechanism has much more improved isotropic characteristic throughout the workspace of the mechanism. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

DEVELOPMENT OF INNER-SPHERICAL CONTINUOUSLY VARIABLE TRANSMISSION FOR BICYCLES

  • Park, M.W.;Lee, H.W.;Park, N.G.;Sang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.593-598
    • /
    • 2007
  • A new continuously variable transmission for bicycles(B-CVT) is developed by using a traction drive mechanism having inner and outer spherical rotors. The B-CVT has high power efficiency, large torque capacity, improved drivability and good packageability. The ratio change mechanism for the B-CVT is very simple, in contrast with other traction drive CVTs. After completing a conceptual design, a performance analysis and a detail design, a prototype of the B-CVT has been manufactured. The prototype has rated power of 100 watts, pedal speed of 6 rad/s and an overall speed ratio of 1.0-4.0. A bench test and an actual bicycle test have been performed to verify the practicability of the B-CVT.

Preparation of Spherical $TiO_2$Powders by Spray Pyrolysis Using Ultrasonic Atomization Technique (초음파 분무 열분해법에 의한 구형 $TiO_2$ 미분말의 합성)

  • 이종흔;조형진;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.831-837
    • /
    • 1991
  • Spherical TiO2 particles are prepared from TiCl4 aqueous solution by the spray pyrolysis method using ultrasonic atomization technique. The formation mechanism of TiO2 particles from atomized droplets it studied by varying the concentration of the source solution, reaction temperature, and the solvent. spherical TiO2 powders with almost the same normalized particle size distribution can be made reproducibly by changing the concentration of the source solution, and their mean sizes are in the range of 0.2~1.4${\mu}{\textrm}{m}$.

  • PDF

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Modeling and Analysis of Drift Error in a MSSG with Double Spherical Envelope Surfaces

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.356-363
    • /
    • 2016
  • To improve the sensing accuracy of the newly developed magnetically suspended sensitive gyroscope (MSSG), it is necessary to analyze the causes of drift error. This paper build the models of disturbing torques generated by stator assembly errors based on the geometric construction of the MSSG with double spherical envelope surfaces, and further reveals the generation mechanism of the drift error. Then the drift error from a single stator magnetic pole is calculated quantitatively with the established model, and the key factors producing the drift error are further discussed. It is proposed that the main approaches in reducing the drift error are guaranteeing the rotor envelope surface to be an ideal spherical and improving the controlling precision of rotor displacement. The common problems associated in a gyroscope with a spherical rotor can be effectively resolved by the proposed method.

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

Disintegration Mechanism of Ammonium Nitrate Droplets by Melt Spray (용융 분무에 의한 질산암모늄 액적의 분열 메카니즘)

  • Ahn, Jin-Hwan;Kim, Jae-Kyeong;Kim, Jun-Hyung;Koo, Kee-Kahb
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.206-212
    • /
    • 2009
  • The pressurized spray system with nitrogen gas was designed to fabricate the spherical AN(ammonium nitrate) particles. When AN melt was sprayed from a nozzle with equivalent diameter of 0.28mm into an ambient dry air, the ligament breakup mechanism of the molten AN was found to be responsible for the droplet formation(or disintegration) of AN melt. In the experimental range of spray temperature with $170{\sim}200^{\circ}C$ and atomization pressure with $0.1{\sim}0.4MPa$, the spherical AN particles with mean diameter of $130{\sim}250{\mu}m$ were obtained.

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.