• Title/Summary/Keyword: Spherical Object

Search Result 89, Processing Time 0.03 seconds

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

Active Object Tracking based on hierarchical application of Region and Color Information (지역정보와 색 정보의 계층적 적용에 의한 능동 객체 추적)

  • Jeong, Joon-Yong;Lee, Kyu-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.633-636
    • /
    • 2010
  • 본 논문에서 Pan, Tilt 카메라를 이용한 객체 추적을 위하여 초기 지역정보를 이용하여 객체를 검출하고 검출된 객체의 색 정보를 이용하여 능동 객체를 추적하는 기술을 제안한다. 외부 환경의 잡음을 제거하기 위해 적응적인 가우시안 혼합 모델링을 이용하여 배경과 객체를 분리한다. 객체가 정해지면 카메라가 이동하는 동안에도 추적이 가능한 CAMShift 추적 알고리즘을 이용하여 객체를 실시간으로 추적한다. CAMShift 추적 알고리즘은 객체의 크기를 계산하므로 객체의 크기가 변하더라도 유동적인 객체 판별이 가능하다. Pan, Tilt의 위치는 구좌표계(Spherical coordinates system)를 이용하여 계산하였다. 이렇게 구해진 Pan, Tilt 위치는 Pan, Tilt 프로토콜을 이용하여 객체의 위치를 화면의 중심에 놓이게 함으로써 적합한 추적을 가능하게 한다.

Estimation of Object Position from Multiple Spherical Images (다중 구면 영상으로부터 물체의 3D 위치 추정)

  • Hong, Cheol-gi;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.570-573
    • /
    • 2020
  • 핀홀 카메라는 그 특성상 전체 공간 중에서 일부분만을 촬영할 수 있으므로 전체 공간을 염두에 두는 3D 재구성에서는 구면 영상에 비해 많은 데이터를 확보해야 한다. 본 논문에서는 다수의 구면 영상에 촬영된 물체의 실제 3차원 위치를 추정하는 방법을 제안한다. 두 카메라의 배치 간격이 가까운 스테레오 비전과는 달리 제안하는 방법에서는 여러 대의 카메라를 넓은 간격으로 배치하여 장애물에 대한 폐색을 극복하도록 한다. 구면 카메라의 화각은 공간 전체를 담을 수 있기 때문에 촬영 간격과 카메라의 회전각이 크더라도 전 영역에 대한 일치 관계를 계산할 수 있다. 실험 결과 구면 영상에 나타난 물체의 실제 위치에 근접한 결과를 얻을 수 있었다.

An Animation Speed-independent Collision Detection Algorithm (애니메이션 속도에 무관한 충돌 탐지 알고리즘)

  • 김형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.247-256
    • /
    • 2004
  • This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.

Out-of-plane Deformation Measurement of Spherical Glasses Lens Using ESPI (ESPI를 이용한 구면 안경렌즈의 면외 변형 측정)

  • Yang, Seung-Pill;Kim, Kyoung-Suk;Jang, Ho-Sub;Kim, Hyun-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2007
  • The spherical lens is typically classified by the refractive power into two groups such as (+) diopter lens and (-) diopter lens. The deformation occurred by the external force that is applied to a lens is caused by the increase or the decrease in the diopter of a lens. In this paper, the deformation of the lens was quantitatively measured by using ESPI (Electronic Speckle Pattern Interferometry) which have been used in the optical measurement field for past few years. ESPI has an advantage that the deformation of an object can be measured precisely by using coherence of the light. The experiment was carried out to the totally 16 types of plastic lens. It was confirmed that the deformation was decreased by increasing the diopter of the lens when same displacement was applied to the lens in case of (+) diopter lens and was increased by decreasing the diopter of the lens in case of (-) diopter lens. Also, it was found that the deformation of (+) diopter lens is less than that of (-) diopter lens. Therefore, with these results, it is expected that the possibility of the quantitative measurement for variation of the optical defect caused by the deformation of a lens when the deformation is occurred to the various types of the lens can be presented and that the application in the lens industrial field can be performed.

  • PDF

Efficient Searching Technique for Nearest Neighbor Object in High-Dimensional Data (고차원 데이터의 효율적인 최근접 객체 검색 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.269-280
    • /
    • 2004
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expresses it as a B+-tree. By solving the problem of search time complexity the pyramid technique also prevents the effect of "phenomenon of dimensional curse" which is caused by treatment of hypercube range query in n-dimensional data space. The SPY-TEC applies the space division strategy in pyramid method and uses spherical range query suitable for similarity search so that Improves the search performance. However, nearest neighbor query is more efficient than range query because it is difficult to specify range in similarity search. Previously proposed index methods perform well only in the specific distribution of data. In this paper, we propose an efficient searching technique for nearest neighbor object using PdR-Tree suggested to improve the search performance for high dimensional data such as multimedia data. Test results, which uses simulation data with various distribution as well as real data, demonstrate that PdR-Tree surpasses both the Pyramid-Technique and SPY-TEC in views of search performance.rformance.

Geodetic monitoring on onshore wind towers: Analysis of vertical and horizontal movements and tower tilt

  • Canto, Luiz Filipe C.;de Seixas, Andrea
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.309-328
    • /
    • 2021
  • The objective of this work was to develop a methodology for geodetic monitoring on onshore wind towers, to ascertain the existence of displacements from object points located in the tower and at the foundation's base. The geodesic auscultation was carried out in the Gravatá 01 and 02 wind towers of the Eólica Gravatá wind farm, located in the Brazilian municipality of Gravatá-PE, using a stable Measurement Reference System. To verify the existence of displacements, pins were implanted, with semi-spherical surfaces, at the bases of the towers being monitored, measured by means of high-precision geometric leveling and around the Gravatá 02 tower, concrete landmarks, iron rods and reflective sheets were implanted, observed using geodetic/topographic methods: GNSS survey, transverse with forced centering, three-dimensional irradiation, edge measurement method and trigonometric leveling of unilateral views. It was found that in the Gravatá 02 tower the average rays of the circular sections of the transverse welds (ST) were 1.8431 m ± 0.0005 m (ST01) and 1.6994 m ± 0.0268 m of ST22, where, 01 and 22 represent the serial number of the transverse welds along the tower. The average calculation of the deflection between the coordinates of the center of the circular section of the ST22 and the vertical reference alignment of the ST1 was 0°2'39.22" ± 2.83" in the Northwest direction and an average linear difference of 0.0878 m ± 0.0078 m. The top deflection angle was 0°8'44.88" and a linear difference of ± 0.2590 m, defined from a non-linear function adjusted by Least Squares Method (LSM).

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.