• Title/Summary/Keyword: Spherical Model

Search Result 562, Processing Time 0.026 seconds

SPHERICAL WIND ACCRETION ONTO SUPERMASSIVE BLACK HOLE (우리은하 중심의 초거대 질량 블랙홀에 대한 구형 항성풍 부착)

  • Im, Su-Yeon;Park, Myeong-Gu
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.79-90
    • /
    • 1995
  • The unique compact radio source, Sgr $A^*$, at the Galactic center show many observational signs that it is powered by supermassive black hole. Recent observations also imply that it is surrounded by winds from nearby IR sources. So we explore the model in which multiwavelength spectrum from Sgr $A^*$ is due to the spherical accretion of these winds onto the central supermassive black hole. Improving upon the previous work, we allowed the possibility that ions and electrons have different temperatures, included the Compton effects and pair processes. Electrons radiate via cyclosynchrotron and bresstrahlung with comptoniztion. We find that ion approaches the virial temperature ${\sim}10^{13}K$ while electron temperature saturates at ${\sim}10^{10}K$. However, decoupling between ion and electron does not greatly affect the shape of the emission spectrum. When the mass of the black hole is ${\sim}10^6M_{\odot}$, radio, IR, X-ray, $\gamma$-ray band spectrum is reasonably explained by the model. Yet Compton effect which is neglected in previous works produces significant emission in IR band, which is marginally compatible with observations. Pair production is negligible and annihilation lines cannot be observed.

  • PDF

Calculation of Radar Echo Signal above Spherical Earth and Its Experimental Validation (지구곡률을 고려한 레이다 수신신호 계산 방법 및 실험적 검증)

  • Koh, Il-Suek;Kwon, Sewoong;Lee, Jong-hyun;Lee, Kiwon;Sun, Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.924-931
    • /
    • 2015
  • When a target locates at low altitude over a curved earth surface and far away from a radar, we examine the accuracy of the conventional formulations to compute the radar echo signal. The 4-ray model is used to calculate the scattering by the target to consider the ground plane effect. In this paper, the diffracted wave is not included. Based on the required parameters able to be calculated by known equations for the estimation of the wave propagation phenomena, the radar echo signal is computed and verified by comparing with measured data sets.

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Non-Steady Group Combustion of Liquid Fuel Droplets (액체연료 액적군 의 비정상 집단연소)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.544-552
    • /
    • 1984
  • A non-steady group combustion model of a spherical droplets cloud has been developed to access the non-steady effects of collective behavior of fuel droplets on combustion characteristics and cloud structure. A system of conservation equations of droplets cloud in axisymmetric spherical coordinate was solved by numerical methods for n-Butylbenzene(C$_{10}$ / $H_{14}$) It was found that the effect of initial droplet size on combustion characteristics is dominated compare with effects of cloud size and number density of droplets. For dense droplets cloud, external group combustion mode is established during main part of cloud life time, and internal and single droplet combustion modes are simultaneously established for the dilute droplets cloud. Radius of cloud and external envelope flame are slowly decreased during main part of cloud life time, and suddenly decreased at end of combustion period.d.

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

3D Object Retrieval Based on Improved Ray Casting Technique (개선된 레이 캐스팅을 이용한 3차원 객체 검색 기법)

  • Lee Sun-Im;Kim Jae-Hyup;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.72-80
    • /
    • 2006
  • In this paper, we propose a new descriptor for 3D model retrieval based on shape information. The proposed method consists of two steps including ray casting method and spherical harmonic function, considering geometric properties of model. In the ray casting method, an adaptive sampling is performed for external shape information. By increasing shape information included in the descriptor, we improve the discriminating power of the proposed descriptor. The coefficients of spherical harmonic function are adaptively calculated, considering geometric frequency characteristics. This makes the descriptor more compact and concise without decreasing the retrieval performance. By combining two methods, we achieve more improved retrieval results.

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.

Process of pulsations of the spherical cavity in a liquid under the influence of ultrasonic vibrations

  • Kuznetsova, Elena L.;Starovoitov, Eduard I.;Vakhneev, Sergey;Kutina, Elena V.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The process of pulsation of a cavitation pocket in liquid is investigated. The Kirkwood-Bethe model was used to describe the motion. A numerical solution algorithm based on the Runge-Kutta-Felberg method of 4-5th order with adaptive selection of the integration step has been developed and implemented. It was revealed that if the initial bubble radius exceeds a certain value, then the bubble will perform several pulsations until the moment of collapse. The same applies to the case of exceeding the amplitude of ultrasonic vibrations of a certain value. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies and to evaluate the influence of various process parameters on the intensity of cavitation.

Analysis of Electromagnetic Shielding Characteristics of the Spherical Multilayered Dielectric (구형 다층 유전체의 전자파 차폐특성 해석)

  • Ryu, Hwang;Lee, Sang-Seul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.26-31
    • /
    • 1993
  • We have analyzed shielding characteristics of the spherical multilayered dielectric, with the assumption that the inner part of the model is filled with the perfect conductor whose radius is varied from 0.2.lambda. to 1.0.lambda. and the outer part of the conducting sphere is covered by a lossy multilayered dielectric. Variation of shielding effects have been examined as the function of parameter of the dielectric layer and the radius of the conducting sphere.

  • PDF