• Title/Summary/Keyword: Spherical Coordinate System

Search Result 60, Processing Time 0.027 seconds

Analysis of Table Tennis Swing using Action Recognition (동작인식을 이용한 탁구 스윙 분석)

  • Heo, Geon;Ha, Jong-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we present an algorithm for the analysis of poses while playing table-tennis using action recognition. We use Kinect as the 3D sensor and 3D skeleton data provided by Kinect for further processing. We adopt a spherical coordinate system and feature selected using k-means clustering. We automatically detect the starting and ending frame and discriminate the action of table-tennis into two groups of forehand and backhand swing. Each swing is modeled using HMM(Hidden Markov Model) and we used a dataset composed of 200 sequences from two players. We can discriminate two types of table tennis swing in real-time. Also, it can provide analysis according to similarities found in good poses.

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

Study on Numerical Model for Tsunami Propagation Using the Spherical Coordinate System (구면좌표계를 이용한 지진해일 전파모의를 위한 연구)

  • Ha, Tae-Min;Kim, Sung-Min;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2105-2108
    • /
    • 2007
  • 지진해일이 발생하여 먼 거리를 전파할 때 코리올리스 힘이 지진해일의 거동에 매우 큰 영향을 준다. 또한 지진해일은 파장에 비해 파고가 작은 장파이기 때문에 먼 거리를 이동하는 지진해일의 해석에는 코리올리스 효과가 반영된 선형 천수방정식을 사용하는 것이 적절하다. 본 연구에서는 구면좌표계에서 유한차분기법을 사용하여 지진해일의 거동을 모의하였다. 대상 지진해일은 1983년 동해 중부 지진해일이다. 관측된 결과를 본 연구에서의 모의 결과와 비교하였다.

  • PDF

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models (시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식)

  • Kim, Hyesuk;Kim, Incheol
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (로터 시스템 회전운동의 정식화 및 해석)

  • Yun, Seong-Ho;Ren, Li-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.475-482
    • /
    • 2008
  • This paper indicates that the use of Euler angles lacks in its consistency and exactness of analysis when it was applied to incorporate the rotational equation of motion for rotor systems by previous researcher. Kinetic energy and angular velocity are different from case to case depending on the way of choosing Euler angles and thus only the linear system has been investigated even though the rotor system has a very nonlinear behavior. A new methodology is applied by using both spherical coordinate and quaternion in the rotor rotation to overcome weaknesses of Euler angles and shows its superiority It is found through numerical examples that the use of quaternion will be a more useful and valid tool to derive the numerical model of the rotor system.

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

PTZ Camera Tracking Using CAMShift (CAMShift를 이용한 PTZ 카메라 추적)

  • Chang, Il-Sik;An, Tae-Ki;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper we proposed an object tracking system using PTZ camera. Once the target object is detected, the CAMshift tracking algorithm focuses it in realtime mode as the camera is moving accordingly. Since the CAMShift algorithm takes into account the object size, zoom related tracking is possible. We used the spherical coordinate to gain pan and tilt position. The position information is used to set the center of target object in the middle of the image by using the PTZ protocol and RS-485 interface. Our system showed excellent experimental results in various environments.

Acceleration of Viewport Extraction for Multi-Object Tracking Results in 360-degree Video (360도 영상에서 다중 객체 추적 결과에 대한 뷰포트 추출 가속화)

  • Heesu Park;Seok Ho Baek;Seokwon Lee;Myeong-jin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2023
  • Realistic and graphics-based virtual reality content is based on 360-degree videos, and viewport extraction through the viewer's intention or automatic recommendation function is essential. This paper designs a viewport extraction system based on multiple object tracking in 360-degree videos and proposes a parallel computing structure necessary for multiple viewport extraction. The viewport extraction process in 360-degree videos is parallelized by composing pixel-wise threads, through 3D spherical surface coordinate transformation from ERP coordinates and 2D coordinate transformation of 3D spherical surface coordinates within the viewport. The proposed structure evaluated the computation time for up to 30 viewport extraction processes in aerial 360-degree video sequences and confirmed up to 5240 times acceleration compared to the CPU-based computation time proportional to the number of viewports. When using high-speed I/O or memory buffers that can reduce ERP frame I/O time, viewport extraction time can be further accelerated by 7.82 times. The proposed parallelized viewport extraction structure can be applied to simultaneous multi-access services for 360-degree videos or virtual reality contents and video summarization services for individual users.

The Characteristic Impedance and the Electric Field Uniformity of a GTEM Cell (GTEM cell의 특성 임피던스와 전계 균일도)

  • 이애경;양기곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.523-532
    • /
    • 1994
  • A knowledge of the accurate characteristic impedance of a GTEM cell is very useful to design it. This paper discusses the characteristic impedance of a GTEM cell applicable to both susceptibility and emission measurements, considering opening angle of it. The over-RGM for analysis is described : this numerical method is operated with respect to the spherical coordinate system. Some results are compared with others and the validity of this analysis is estabished. The characteristic impedances of a GTEM cell with the variation of geometrical constructions on cross section are presented ; the effect of the opening angle on the characteristic impedance is show. Finally, the electirc field uniformities on a cross section of a GTEM cell are considered for various opening angles.

  • PDF

Enumeration of axial rotation

  • Yoon, Yong-San
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.85-93
    • /
    • 2014
  • In this paper, two procedures of enumerating the axial rotation are proposed using the unit sphere of the spherical rotation coordinate system specifying 3D rotation. If the trajectory of the movement is known, the integration of the axial component of the angular velocity plus the geometric effect equal to the enclosed area subtended by the geodesic path on the surface of the unit sphere. If the postures of the initial and final positions are known, the axial rotation is determined by the angular difference from the parallel transport along the geodesic path. The path dependency of the axial rotation of the three dimensional rigid body motion is due to the geometric effect corresponding to the closed loop discontinuity. Firstly, the closed loop discontinuity is examined for the infinitesimal region. The general closed loop discontinuity can be evaluated by the summation of those discontinuities of the infinitesimal regions forming the whole loop. This general loop discontinuity is equal to the surface area enclosed by the closed loop on the surface of the unit sphere. Using this quantification of the closed loop discontinuity of the axial rotation, the geometric effect is determined in enumerating the axial rotation. As an example, the axial rotation of the arm by the Codman's movement is evaluated, which other methods of enumerating the axial rotations failed.