• Title/Summary/Keyword: Spherical Aberration

Search Result 111, Processing Time 0.022 seconds

REGISTRATION OF MICROSCOPIC SECTION IMAGES BASED ON A RADIAL DISTORTION MODEL

  • Lee, Hoo-Sung;Yun, Il-Dong;Kim, Dong-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.303-306
    • /
    • 2009
  • Registration of microscopic section images from an organism is of importance in analyzing and understanding the function of an organism. Microscopes usually suffer from the radial distortion due to the spherical aberration. In this paper, a correction scheme for the intra-section registration is proposed. The correction scheme uses two corresponding feature points under the radial distortion model. Proposing several variations of the proposed scheme, we extensively conducted experiments for real microscopic images. Iterative versions of the correction from multiple feature points provide good performance for the registration of the optical and scanning electron microscopic images.

  • PDF

Compensation Method of Mechanical Error for Micro Holographic Storage (마이크로 홀로그래픽 저장장치의 기계적 에러 보상기법)

  • Min, Cheol-Ki;Jeon, Sung-Bin;Cho, Chang-Hyun;Kim, Do-Hyung;Park, No-Cheol;Yang, Hyun-Seok;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2012
  • In this paper, we experimentally investigated compensation method of the mechanical errors for the micro holographic storage. The aim of this research was overcome of disc tilt and spherical aberration problems. The proposed method was performed by using glass plate and zoom optics.

A Circular Bimorph Deformable Mirror for Circular/Annulus/Square Laser Beam Compensation

  • Lee J.H.;Lee Y.C.;Cheon H.J.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • We are studying the application of an adaptive optics system to upgrade the beam quality of a laser. The adaptive optics (AO) system consists of a bimorph deformable mirror, a Shack-Hartmann sensor and a control system. In most AO applications, the beam aperture is considered to be circular. However, in some cases such as laser beams from unstable resonators, the beam apertures are annulus or a holed-rectangle. In this paper, we investigate how well a bimorph deformable mirror of ${\Phi}120\;mm$ clear aperture can compensate phase distortions for three different beam configurations; 1) ${\Phi}120\;mm$ circular aperture, 2) ${\Phi}100\;mm$ annulus aperture with a ${\Phi}20\;mm$ hole and 3) $70\;mm{\times}70\;mm$ square aperture with a hole of $30\;mm{\times}30\;mm$. This study concludes that the bimorph mirror, which might be considered as a modal controller, can compensate tilt, defocus, coma and astigmatism, and spherical aberration for all three beams.

Optical Design of an Image-space Telecentric Two-mirror System for Wide-field Line Imaging

  • Lee, Jong-Ung;Kim, Youngsoo;Kim, Seo Hyun;Kim, Yeonsoo;Kim, Hyunsook
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.344-350
    • /
    • 2017
  • We present a new design approach and an example design for an image-space telecentric two-mirror system that has a fast f-number and a wide-field line image. The initial design of the telecentric mirror system is a conventional axially symmetric system, consisting of a flat primary mirror with fourth-order aspheric deformation and an oblate ellipsoidal secondary mirror to correct spherical aberration, coma, and field curvature. Even though in the optimized design the primary mirror is tilted, to avoid ray obstruction by the secondary mirror, the image-space telecentric two-mirror system shows quite good imaging performance, for a line imager.

Development of Aspheric Microlens Array to Improve the Properties of Multi Optical Probes (다중 광 프로브 특성 향상을 위한 비구면 마이크로렌즈 어레이의 개발)

  • Min, J.;Kim, H.;Choi, M.;Kim, B.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.104-107
    • /
    • 2007
  • An aspheric microlens array to improve the properties of multi optical probes was designed and fabricated. To generate multi optical probes with good qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. Using the reflow process, a master pattern of aspheric microlens array was made and finally with the ultraviolet-imprinting (UV-imprinting) method, the aspheric microlens array was replicated. The reflow condition was optimized to realize the master pattern of the microlens array with the designed aspheric shape. The intensity distribution of the optical probes at the focal plane showed a diffraction-limited shape.

  • PDF

Design of an Endoscopic Microscope Objective Composed of GRIN(Gradient-Index) Lens with Scanning Devices (GRIN 렌즈로 구성된 주사방식의 내시현미경 대물렌즈의 설계)

  • Kim, Keyong-Jeong;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.311-318
    • /
    • 2009
  • We present an attractive real time in-vivo endoscopic microscope with a resolution of submicron, in which two kinds of optical correcting plates are inserted to eliminate higher order spherical aberration and field curvature. And, since the conventional objective lens is replaced to GRIN lenses with diameter of 1 mm, the above endoscopic microscope can be effectively utilized to invade minimally for live animals.

Shaded-Mask Filtering for Extended Depth-of-Field Microscopy

  • Escobar, Isabel;Saavedra, Genaro;Martinez-Corral, Manuel;Calatayud, Arnau;Doblas, Ana
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • This paper proposes a new spatial filtering approach for increasing the depth-of-field (DOF) of imaging systems, which is very useful for obtaining sharp images for a wide range of axial positions of the object. Many different techniques have been reported to increase the depth of field. However the main advantage in our method is its simplicity, since we propose the use of purely absorbing beam-shaping elements, which allows a high focal depth with a minimum modification of the optical architecture. In the filter design, we have used the analogy between the axial behavior of a system with spherical aberration and the transverse impulse response of a 1D defocused system. This allowed us the design of a ring-shaded filter. Finally, experimental verification of the theoretical statements is also provided.

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

Design of Imaging Optical System with 24mm Focal length for MWIR (MWIR용 24mm 초점거리를 가지는 결상광학계의 설계)

  • Lee, Sang-Kil;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.203-207
    • /
    • 2018
  • This paper deals with the design and development of a lens system capable of imaging an infrared image of $3{\sim}5{\mu}m$ wavelength bands with a focal length of 24mm and good atmospheric transmission characteristics. The design used CodeV, a commercial design program, and the optimization is carried out with weighting to eliminate chromatic aberration, spherical aberration and distortion. The designed lens system consists of two lenses consisting of Si and Ge. Each lens has an aspherical surface on one side. And this optical system has the resolution of the characteristics that the MTF value is 0.40 at the line width of 29lp/mm and the MTF value is 0.25 at the line width of 20lp/mm. This optical system is considered to have the capability to be applied to the thermal imaging camera for MWIR using the $206{\times}156$ array infrared detector of $25{\mu}m$ pixels and the $320{\times}240$ array infrared detector of $17{\mu}m$ pixels.

Lens system design for head mounted display using schematic eyes (정밀모형안을 이용한 Head Mounted Display용 렌즈계 설계)

  • 박성찬;안현경
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2003
  • We discussed the design of lens module schematic eyes equivalent to finite model eyes, which are used to model the human eye based on spherical aberration and Stiles-Crowford effect. The optical system for head mounted display (HMD) is designed and evaluated using lens module schematic eyes. In addition to a compact HMD system, an optical system with high Performance is required. To satisfy these requirements, we used diffractive optical elements and aspheric surfaces so that the color and mono-chromatic aberrations were corrected. The optical system for HMD is composed of 0.47 inch micro-display of SVGA grade with 480,000 pixels, a plastic hybrid lens for the virtual image, and the lens module schematic eyes. The designed optical system fulfills the current specifications of HMD: such as, EFL of 31.25 mm, FOV of 24H$\times$18V$\times$30D degrees, and overall length of 59.1 mm. As a result, we could design an optical system useful for HMD; the system is expected to be comfortable while the user wears it.