• 제목/요약/키워드: Sphene$CrCl_3$

검색결과 3건 처리시간 0.022초

Sphene-Pink 안료에 미치는 CrCl3의 영향 (Influence of CrCl3 in Sphene-Pink Pigments)

  • 이현수;이병하
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.268-275
    • /
    • 2008
  • In high temperature ceramic glazes, a stable range of pink-red colors producing $Cr_2O_3-SnO_2-CaO-SiO_2$ pigments are factored by Cassiterite and Malayaite relationship with $Cr_2O_3$. The experiment described the effect of $CrCl_3$ by adding $H_3BO_3$ as a mineralizer to increase the formation of Malayaite crystal, substituting $CrCl_3$ instead of $Cr_2O_3$ in pigment as a chromophore. Synthesized pigments were analyzed by XRD, FT-IR, Raman Spectroscop, UV and UV-vis. The result shows the differences in amount of crystal phases and oxidation state of Cr ion, which causes the color change. The melting point of $CrCl_3$ is lower than $Cr_2O_3$ which act as a mineralizer and makes the pigment synthesized in lower temperature at $1200^{\circ}C$. Holding 3 h firing at $900^{\circ}C$ where the synthesize forms shows better effect of Malayaite crystal phases and increasing engaged effect of $CrCl_3$ where the color pigmentation is more defined then in $Cr_2O_3$.

Synthesis of Sphene-pink Pigment under Various Firing Conditions

  • Lee, Hyun-Soo;Park, Joo-Seok;Lee, Byung-Ha
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.615-620
    • /
    • 2009
  • The present research was performed to determine the optimal firing condition and holding time for malayaite crystal, which is responsible for the stable pink-red coloration in glaze at high temperatures, using Cr$Cl_3$ as chromophore for the synthesis of $Cr_2O_3-SnO_2-CaO-SiO_2$ system pigments. The malayaite crystal was influenced by the raw materials used for synthesis, firing temperature, and holding time. Thus there are differences in the crystal phase and in the coloration according to the condition of synthesis. When Cr$Cl_3$ was used as chromophore, the pigment could be synthesized at lower temperatures, because Cr$Cl_3$ melts at $1500{^{\circ}C}$, which is much lower than the temperature at which $Cr_2O_3$ melts (higher than $2435{^{\circ}C}$). And the employed Cr ion showed a change in oxidation state. When a mineralizer was used to improve the employment of malayaite and the Cr ion, and the low temperature was maintained at which the malayaite crystal is produced, the production of malayaite crystal was promoted and the employment of chromophore was also promoted in the oxidation state of Cr (IV). The results of the experiment showed that the optimal firing condition was 18 h of holding time at $800{^{\circ}C}$, using Cr$Cl_3$ as chromophore, followed by 2 h at the raised temperature of $1150{^{\circ}C}$. The change in coloration of the Cr (IV) employed by malayaite showed a very rich color of red. Thus it was possible to effectively synthesize sphene-pink pigments with more red tint at a low temperature.

Synthesis of Sphene (CaSnSiO5)-Pink Pigments with CrCl3

  • Lee, Hyun-Soo;Lee, Byung-Ha
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.405-412
    • /
    • 2009
  • In high temperature ceramic glazes, a stable range of pink-red colors that produced $Cr_2O_3-SnO_2-CaO-SiO_2$ pigments were factored by Cassiterite($SnO_2$) and Malayaite($CaSnSiO_5$) by $Cr_2O_3$. The experiment examined the influence of $CrCl_3$, a Sn-Cr substitution added with a mineralizer ($H_3BO_3$), as a chromophore in pigments. The experiment also studied the effect of $H_3BO_3$ (2 wt%) when added to malayaite($CaSnSiO_5$) to see if the crystalline reaction will increase. $Cr_2O_3$ was also substituted with $CrCl_3$ in order to prove how much influence $CrCl_3$ had on the $H_3BO_3$. Malayaite and cassiterite were the basic compound materials and the experiment was conducted both with and without mineralizers (2 wt% of $H_3BO_3$). Each compound was synthesized at 800, 1000, 1200, 1300, 1400, $1500^{\circ}C$ for 2 h. Synthesized pigments were analyzed by XRD, FT-IR and UV-Vis. The temperature variation produced two crystal phases that showed the different engaging effects of Cr oxidation. $CrCl_3$ produced a better effect on the malayaite crystal phase, resulting in a more defined pigmentation of the pink-red coloration compared to $Cr_2O_3$.